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Abstract: Sludge from wastewater treatment plants (WWTPs) in industrial park is currently 
a serious problem in Vietnam as well as many countries around the world. Unlike other by–
products, sewage sludge from WWTPs contains a lot of toxic components, heavy metals, 
persistent organic substances and many other hazardous ingredients in high concentrations. 
Up to now, there has not been a Vietnamese study focusing on systematically assessing the 
level of toxic pollutants in industrial sludge in Vietnam. Therefore, this study focuses on 
evaluating the characteristics of industrial wastewater sludge in a specific industrial park, 
and thereby determining the characteristics and current status of heavy metal pollution in 
the sludge compared with agricultural soil samples. This study determined the heavy metals 
enrichments and their possible sources in industrial sludges from different sampling time. 
The results show that industrial sludge exhibits very high pollution for some typical heavy 
metals, especially Cu and Cd. The analysis of the correlation relationship between heavy 
metals also helps to identify the source of emission of heavy metals in the sludge sample. 
The PI, Igeo indexes are also 2–10 times higher than the control soil samples. In addition, 
the study also used citric acid, GLDA and ascorbic acid solutions as a method of heavy 
metal extraction from sludge with relatively high efficiency (~80%). Among the chelators, 
GLDA can be selected as the most effective removal with high capacity to remove Zn and 
Pb. 

Keywords: Industrial sludges; Heavy metal removal; Pollution; Enrichment. 
 

1. Introduction 

Industrial sludges from various industries contain trace metals, organic compounds, 
macronutrients, micronutrients, organic microbial contaminants, microorganisms and eggs 
of parasitic organisms [1–3]. Previous studies have shown that the annual amount of sludge 
is constantly increasing due to urbanization and industrialization. Most of the hazardous 
heavy metals (Zn, Sb, Cr, Ni, Hg, Cd, Sn and V) are found in the sludge with relative 
concentrations many times higher than the allowable limit [1]. When arbitrarily disposing of 
industrial sludge into the environment, heavy metals will easily spread to surface water, 
groundwater and seep into the ground. Heavy metals usually exist in sludge in 5 forms: ionic 
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form, carbonate bound form, bound form inside or outside the solid particle mass with iron 
oxide and manganese, bound form with organic compounds, inert form, stable in the 
environment with mineral grain structure, difficult to be released under natural conditions 
[3]. 

Heavy metals such as Cr, Ni, Cu, As, Cd and Pb have been recognized as hazardous 
elements for the environment. The occurrence of heavy metals in the industrial wastewater 
and sludge are of interest because they would be often presented at considerable quantities 
and if leaked into surface waters or arable land, that can have severe effects on the 
environment and public health [4–5]. Sludge which disposes from different industries 
contains trace metals, organic compounds, macronutrients, micronutrients, organic micro 
pollutants [6]. So, the accumulation of industrial sludge poses environment problem and the 
bioavailable fractions of these wastes may result in secondary environmental pollution. 
Therefore, contamination of environment by heavy metals from untreated wastewater and 
sludge of various industries is a worldwide environmental problem [6–8]. Unlike organic 
wastes, heavy metals are non–biodegradable and thus must be treated to avoid polluting the 
environment. [5] studied the effect of heavy metals in sewage sludge applied to soil on its 
metal availability and the growth and yield of crops. Their results indicated that the yields of 
both cereals and legumes in dressed regions were lower than those of control regions. 

In Vietnam, there are clear signs of heavy metal pollution from industrial sludges. The 
industrial waste problem has become one of the prime concerns in many provinces of 
Vietnam. Many industries have set up in and around the cities during the last decade, and the 
number of new industries is continually increasing. In recent times, the rapid development of 
various industries has created environmental problems that pose a serious threat to the 
environment [9–12]. A recent study shows that although environmental management has 
improved in recent years, heavy metal pollution levels are still high in sludge from Hanoi’s 
Kim Nguu River. Most of the sludge samples here have concentrations of Cr, Ni, Cu, As, Cd 
and Pb exceeding the permissible standards of Vietnam (QCVN 50: 2013/BTNMT), which 
is caused by industrial wastewater discharged into the Kim Nguu River [12]. This result is in 
stark contrast to the situation in the Mekong Delta, which is less polluted by industrial 
activities [10]. The risk of environmental pollution from sludge can be found in Vietnamese 
statistical reports around Ho Chi Minh City [13–14] where there are many industrial plants 
but information on composition and volume sludge is still a gap that does not meet the current 
environmental management needs of Vietnam. 

Various surveys of the heavy metal concentrations in sewage sludge have been 
undertaken to evaluate the suitability of sludge for land application. It is particularly 
important to study ecological risk assessment to industrial sludges because modern industrial 
areas are often densely populated due to the presence of industrial and commercial activities 
as well as easy access to amenities such as transportation, electricity, water, entertainment, 
and healthcare. 

Therefore, this paper studies the characteristics of sludge in an industrial park in the 
Northern province, thereby assessing the pollution level of heavy metals in the sludge 
samples. In addition, the study also identifies the emission sources of toxic substances in the 
analyzed sludge sample, find an appropriate method of recovering heavy metals from the 
sludges. This study aims to propose an efficient and friendly method of heavy metal 
extraction from the sludges. 

2. Materials and Methods  

2.1. Collecting sludge samples 

Sludge samples were collected from wastewater treatment plants located in an industrial 
park (BT, 11 samples) and agricultural soil (control, 4 samples) in the North of Vietnam. 
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Industrial sludges of the industrial park were collected and managed in the form of ordinary 
solid waste. Each factory that generates heavy metals in conventional sludge has its own 
wastewater treatment system, treating heavy metals and some substances before being poured 
into the general treatment system of the industrial park. However, industrial sludge is 
generated during wastewater treatment. Industrial wastewater, which is treated in wastewater 
treatment plants, usually meets column B standards according to QCVN 40:2011/BTNMT 
before being connected to a common wastewater treatment plant of industrial parks [15]. The 
industrial park's wastewater treatment plant has been synchronously invested and built by a 
leading unit in the field of wastewater treatment plant construction for industrial zones. The 
wastewater treatment system met the standard of grade A wastewater treatment (QCVN 
40:2011/BTNMT) with the total capacity according to the design of 4 modules is 10,000 
m3/day. The water collection system in the industrial parks is MMBR system (Moving bed 
biofilm reactor system) and they had the standard for centralized WWTP. Currently 1 module 
has been operating with a capacity of 2,500m3/day. The wastewater treatment system has 
been fully trained and transferred to the industrial park for operation. Industrial wastewater 
is treated at each wastewater treatment plant, after partially resolved the heavy metal 
component, it is brought into the centralized water treatment area. The industrial park which 
was chosen in this study has 23 manufacturing companies, including 7 production facilities 
with wastewater containing high heavy metal content, including metallurgical, mechanical 
and chemical plants. 

2.2. Sample pre–treatment 

Sludge samples were taken 4 times in a year 2020, total samples were 12, each sample 
weight was 200 grams and stored in sealed zipper bags. In the sludge storage area, a small 
shovel was used to scoop up samples at 5 points, then mix well and take 200 gram each. 
Some indicators such as pH, EC, ORP, COD, T–N, T–P are analyzed at the wastewater 
treatment station [16]. After collection, the samples were stored in sealed foam containers, in 
a cool place. Samples were moved to the laboratory according to TCVN 6663–15:2008 (ISO 
5667–15:1999). The collected sludge sample is dried in a dark and closed room, then the 
sample is crushed, removed impurities, sieved through a sieve with a pore size of 0.63 μm 
and collected samples with a particle size < 0.63 μm to analyze the metal content in the most 
active sedimentary phase, containing mainly clay and meat particles. Samples were stored in 
a deep refrigerator waiting for analysis, before analysis the samples were left at room 
temperature and the drying coefficient was determined according to TCVN 4080:2011. 
Industrial sludge is collected at the mud drying yard by suitable tools. For the control soil 
sample, 4 agricultural soil samples were also taken for comparison as the background value 
for each sampling time. We aim to compare the industrial sludges with agricultural soil 
samples for risk assessment. The soils is nearby the industrial park and can be shown that 
they were not contaminated. The morphology and elemental contents on the surface of the 
investigated sludge samples were observed and analyzed using a scanning electron 
microscope (SEM) and energy dispersive spectroscopy (EDS) techniques (SEM–EDS, JEOL 
JSM–7600F using its variable pressure mode and an accelerating voltage of 15 kV). 

2.3. Total metal concentration analysis 

Total heavy metal analysis was performed in accordance with the sample handling 
procedure for the analysis of Cd, Cr, Cu, Pb, Ni and Zn metals, which was conducted 
according to the guidelines of EPA 3050B [17]. Analytical grade (AG) chemicals, procured 
from E–Merck, India, were used throughout the study without any further purification. The 
metal standards were prepared from stock certified standard solution of 1000 mg/l (Merck, 
Germany) by successive dilution with ultra–pure water (TKA Milli–Q Ultra–Pure Water 
System, Germany). The analytical quality control was assured by standard operating 
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procedures, repeated analysis of reagent blanks and recovery analysis of several spiked 
samples. Other parameters were analysed using the standard methods of US. EPA. 

2.4. Assessment of heavy metal pollution according to pollution indicators 

2.4.1. Pollution Index (PI) 

PI: Single pollution index of heavy metals, determined according to the following 
formula: 

PI = TE(industrial sludge sample)/TE(control sample)  (1) 
 

where TE (waste sludge) is the average value of heavy metals in the sludge; TE (control 
soil) is the mean value in the baseline soil sample; PI is classified as follows: low (PI ≤ 1), 
moderate (1 < PI < 3), high (PI ≥ 3) [13]. 

2.4.2. Geoaccumulation indexes (Igeo) 

Igeo assesses contamination by comparing the total metal content of the sample with the 
background value of that metal [14]. 

Igeo = log2
��

�,���
       (2) 

where Cn: Metal content in the sample; Bn: Base value of metals in the Earth's crust; 
1.5: The factor is given to minimize the impact of possible changes to the background value 
due to lithological changes in the sediment. 

where Igeo ≤ 0: Not contaminated, 0 ≤ Igeo ≤ 1: not– average contaminated, 1 ≤ Igeo ≤ 
2: average, 2 ≤ Igeo ≤ 3: average– heavily contaminated, 3 ≤ Igeo ≤ 4: heavily contaminated, 
4 ≤ Igeo ≤ 5: heavily and seriously contaminated, 5 ≥ Igeo: seriously contaminated. 

2.4.3. Treatment of heavy metals in sludge using environmentally friendly chemicals 

In this study, two types of chelator solutions were used: 1. Solution of N, N–
Dicarboxymethyl glutamic acid tetrasodium salt (GLDA), ascorbic acid and citric acid. The 
concentrations of the single washing agent are 200 mM for all chelators. The initial solution 
of heavy metals (3 metals: Pb, Zn, Cu, with concentration corresponding: 300, 1200 and 150 
mg/L) were used to investigate the removal effects on heavy metal washing efficiency. The 
concentrations were similar with heavy metal concentration in the types of industrial sludges. 
The reaction time was 24 hours with pH 7.0. A solution of 0.1 N HCl were used as control 
solution in all experiments. pH values of the washing solution were adjusted using HCl and 
NaOH. This study was similar with method [5]. 

2.4.4. Statistical data processing 

The classical statistical analyzes were processed using IBM SPSS software version 20. 
The probability level P < 0.05 was considered to be significant. 

3. Results 

3.1. Sludge characteristic 

After processing and collecting data, a table of hysicochemical properties and SEM 
images of the sewage sludge samples of the research subjects were presented as follows 
(Table 1). 4 samples of industrial sludges among 12 samples were chosen to investigate the 
characteristic. According to QCVN 50:2013/BTNMT, the pH of sludge with pH ≥ 12.5 or 
pH ≤ 2.0 is defined as hazardous sludge. Looking at the data table, it can be seen that the pH 
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of the sludge sample ranges from 6.05 ± 0.1 to 6.07 ± 0.12, all of which are neutral for 
industrial sludge. Total organic carbon fluctuated 634 ± 40.88 mg/L. 

Table 1. Summary of sludge characteristic. 

Parameters Sample 1 Sample 2 Sample 3 Sample 4 

pH 6.3 6.5 6.4 6.3 

ORP (mV) 230 350 402 389 

COD (mg/L) 1203 1504 1315 1420 

TOC (mg/L) 728 837 204 736 

T–N (mg/L) 612.3 936.6 699.4 777.5 

T–P (mg/L) 45.1 23.1 32.0 34 

Potassium (K) 203 201 210 190 

Magnesium (Mg) 102 120 115 113 

 

Figure 1. A scanning electron microscope (SEM) of the sludge. 

Figure 1 shows microscopic images of representative samples of sludge from the 
industrial site. In general, the surface morphological characteristics of the sludge are 
relatively uniform. The high proportions of elemental oxygen and carbon in the sludge 
samples indicate a large amount of organic matter in the sample, possibly as a result of 
coagulation of the polymers during the treatment process. The similarity in surface 
morphology of these samples also supports this conclusion. 

3.2. Heavy metal concentrations 

The average concentrations of Cd, Cu, Pb, Zn in the sludge samples of the industrial 
park had the average concentrations of the elements 0.9 mg/kg, 297.2 mg/kg, 164.6 mg/kg 
and 1177.4 mg/kg, respectively. Most of the elements analyzed were lower than the 
maximum allowable concentrations for normal sludge (QCVN 50: 2013) (10 mg/kg; 300 
mg/kg; 5000 mg/kg, respectively). In some cases, some sludge samples from Ba Thien 
Industrial Park exceeded the allowable limit for Pb. Therefore, these sludges are considered 
as hazardous solid wastes, which are not treated and buried according to regulations [15]. 
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Figure 2. Heavy metal total concentrations in sludges. 

3.3. Pollution Index calculation in the industrial sludges 

Table 2 describes the pollution index of industrial sludges. The PI (the ratio of TE 

concentration in sludges to that in soils) was > 3 for Zn, Cu, V and Cr in all samples (Figure 

3). Furthermore, the medians of the values were > 5, indicating that these heavy metals were 

highly enriched in the sludges according to the classification [18]. 

Table 2. Pollution index of industrial sludges. 
 

Fe V Cd Cr Cu Ni Mn Pb Zn 

PI1 64.22 8.54 5.06 9.41 19.87 7.91 3.56 1.65 23.88 

PI 2 60.09 11.25 5.52 13.78 35.06 5.12 5.34 1.74 19.83 

PI3 95.87 13.96 5.06 16.47 33.26 7.44 6.88 3.97 19.17 

PI4 80.28 17.50 4.14 15.13 6.56 3.95 9.61 2.81 17.07 

PI5 81.19 19.38 3.22 12.10 8.54 5.12 6.77 2.08 15.38 

PI6 130.73 17.50 5.52 19.16 48.54 11.63 5.22 8.24 17.32 

PI7 95.87 9.79 4.14 12.77 22.47 5.12 3.68 5.50 14.56 

PI8 83.94 20.83 2.76 12.10 26.07 5.58 6.77 11.30 17.28 

PI9 87.16 11.88 2.76 11.09 29.66 6.98 7.00 9.77 33.40 

PI10 115.14 27.08 3.68 21.51 41.35 10.23 9.97 3.97 40.78 

PI11 96.79 12.71 5.52 11.76 22.47 2.51 7.00 4.27 32.82 

 

Figure 3. Comparation between industrial sludges and control samples. 

0

500

1000

1500

2000

2500

As Cd Cr Cu Pb Zn

C
on

ce
n

tr
at

io
n

 (
m

g
/k

g)

Metals

1st sampling
time
2nd sampling
time

0 20 40 60 80 100 120 140

As
Hg
Sb
Fe
V

Pd
Cd
Cr
Cu
Ni

Mn
Pb
Zn



VN J. Hydrometeorol. 2022, 10, 1-10; doi:10.36335/VNJHM.2022(10).1-10 7 

 

In general, compared with the natural soil control sample, most of the PI of metals in the 
wastewater samples from the industrial park are high. In which, Fe is the metal with the 
highest PI index, at a high level (PI ≥ 3). Pb has the lowest PI, which is low (PI ≤ 1). 

Compared with the control sample of sewage sludge from the groundwater treatment 
plant, most metals have medium PI, Cd is the metal with the highest PI index, at high level 
(PI ≥ 3). Fe is the metal with the lowest PI, all PI values < 1, at a low level (PI ≤ 1). This 
shows that the metal concentration distribution for the ground soil and sludge samples is not 
the same. For the sludge samples, the metal concentration is distributed more evenly and 
averagely than in the natural soil environment. Similar to industrial park sludge samples, Fe 
and Zn are two components that have great influence on the natural soil environment [2, 19, 
20]. 

3.4. Geoaccumulation indexes (Igeo) 

There are different indexes generally used to identify metal concentrations of 
environmental concern like: the metal enrichment factor (EF) and geoaccumulation indexes 
(Igeo) [8–9]. These indexes identify, numerically, pollution level soils and normally they are 
calculated on the soil exchangeable fraction because it represents the real bioavailable 
fraction. The bioavailable metal content in soil exerts a decisive impact on soil quality and 
it’s used in food production. Hence, the assessment of metal contamination is of vital 
importance in farming areas. 

Based on the data in the Table 3, the pollution level based on the Igeo index, it can be 
seen that: In general, most metals have medium–high Igeo values. In which, Fe has the 
highest average Igeo value, or in other words, the highest level of Fe contamination. Hg is 
the metal with the lowest mean Igeo value (all values ≤ 0). 

Table 3. Igeo index in industrial park sludge. 

Metals 

Name 

As Sb Fe V Cd Cr Cu Ni Mn Pb Zn 

BT1 –0.17 1.42 5.42 2.51 1.87 2.64 3.73 2.36 1.25 0.13 3.99 

BT2 0.37 0.68 12.51 4.58 –0.91 4.19 7.44 2.29 7.64 4.66 8.83 

BT3 0.60 1.70 13.18 4.90 –1.03 4.44 7.36 2.83 8.01 5.85 8.78 

BT4 0.15 0.26 12.93 5.22 –1.32 4.32 5.02 1.92 8.49 5.35 8.61 

BT5 0.42 0.72 12.94 5.37 –1.68 4.00 5.40 2.29 7.98 4.92 8.46 

BT6 0.46 1.90 13.63 5.22 –0.91 4.66 7.91 3.47 7.61 6.91 8.63 

BT7 0.68 2.09 13.18 4.38 –1.32 4.08 6.80 2.29 7.11 6.32 8.38 

BT8 0.37 2.15 12.99 5.47 –1.91 4.00 7.01 2.42 7.98 7.36 8.63 

BT9 0.42 1.53 13.04 4.66 –1.91 3.87 7.20 2.74 8.03 7.15 9.58 

BT10 1.76 1.77 13.45 5.85 –1.49 4.83 7.68 3.29 8.54 5.85 9.87 

BT11 1.92 1.87 13.20 4.76 –0.91 3.96 6.80 1.26 8.03 5.96 9.55 

3.5. Heavy metal recovery experiment 

In this study, sewage sludge was used as the subject of metal recovery study. Chemical 
analysis using the ICP–MS method showed that the sludge was heavily contaminated by 
heavy metals, especially zinc (Zn) with concentrations higher than 1200 mg/kg. Therefore, 
the study used 3 types of specific chelators to test the ability to recover 3 typical heavy metals 
in wastewater. 
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Figure 4. Effect of different extractant concentrations on metal removal. 

Overall, among the studied chelators, ascorbic acid was the most effective in extracting 
Zn from contaminated sewage sludge, followed by GLDA and citric acid (Figure 4). GLDA 
performed best in extracting Pb and Cu from contaminated sludge although the overall 
removal efficiency was not really higher than the other 2 chelators for Pb. It can be seen that 
citric acid has the worst removal efficiency compared with other chelators under the same 
study conditions. 

More importantly, 80.1% Pb, 76,5% Cu, two metals with levels exceeding the national 
allowable limit were extracted from the sludge using only 200 mM recoverable ascorbic 
heavy metal. The results of the study open up new application directions for environmentally 
friendly chemicals used to replace strong acids in cleaning and recovering heavy metals in 
polluted sludge. 

4. Discussion 

Waste sludge at Ba Thien 2– Vinh Phuc Industrial Park and industrial sludge collected 
at Thanh Cong 2 Cement Plant both show very high pollution for some typical heavy metals, 
especially Cu and Cd. Among the heavy metals, Cadmium has the highest ecological 
potential risk compared to other elements. 

Sludge from the two sampling points above is considered hazardous waste. The results 
of analysis of pollution index (PI) and ecological risk index (RI) both show that the sludge 
sample has 2–10 times higher results than the control sample. Industrial sludges have a higher 
immobilization capacity, with (–COOH) and (–OH) being the typical functional groups 
present on the sludge surface. 

The Pollution Index (PI) in metals and Geoaccumulation Index (Igeo) are indicators 
studied to calculate the presence and intensity of anthropogenic contaminant deposition on 
soil or sludges. These indexes of potential contamination are calculated by the normalization 
of one metal concentration in the research sample respect to the concentration of a reference 
element. In this study, although the geological accumulation risk indicators are at a moderate 
level of pollution, the ecological risks of each metal Er and the pollution index of each metal 
are quite high, potentially causing polluted environment. Therefore, it is necessary to strictly 
manage as well as take reasonable measures to handle and avoid risks. 

The final result shows that most heavy metals in the sludges samples were lower than 
the maximum allowable concentrations in standard guideline (QCVN 50: 2013) (10 mg/kg; 
300 mg/kg; 5000 mg/kg, respectively). But specifically, lead, zinc and copper in some sludge 
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samples exceeding the national allowable limit so these metals were chosen for removal 
study. Lead and copper were extracted from the sludge using only 200 mM recoverable 
ascorbic, GLDA and citric solution that worked effectively. The results of the study open up 
new application directions for environmentally friendly chemicals used to replace strong 
acids in cleaning and recovering heavy metals in contaminated industrial sludges. 

5. Conclusions 

It is essential to determine the heavy metal concentrations in the industrial sludges to 
select appropriate disposal methods. We conducted a survey of heavy metal concentrations 
of sludge samples from 11 industrial sludge samples from an industrial park located in Vinh 
Phuc Province. The average concentrations of Cd, Cu, Pb, Zn in the sludge samples of the 
industrial park had the average concentrations of the elements 0.9 mg/kg, 297.2 mg/kg, 164.6 
mg/kg and 1177.4 mg/kg, respectively. This study also characterizes the physico–chemical 
characteristic of industrial sludge. Environmental issues related to possible management 
options are also addressed. Sludge samples from industrial parks were analysed and 
calculated the PI and Igeo index in comparison with the natural soils. The results indicate 
that pollution indexes of Cu, Pb, and Zn could be 2–10 times higher than the control natural 
soil and it may pose a potential threat to the water quality for sludge dumped near water 
bodies. Therefore, we recommend avoiding uncontrolled upland disposal of such sludge. 
Some preliminary treatment to remove heavy metals from the sludges should be applied. A 
recovery of Cu and Pb using GLDA solution from this sludge could be considered with high 
efficiency. 
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Abstract: The study on assessing the impacts of saline intrusion on water resources, from 

building a hydraulic model MIKE 11 including hydraulic model, rain model, and advection–

dispersion module (HD + RR + AD) together with the calculation scenarios in consideration 

of climate change through the high scenarios RCP 8.5 and low scenarios RCP 4.5 in 2025, 

2030 and 2050 are highlighted in the paper. In addition, the impacts of salinity, salinity 

margins on the constructions, and water resources through the cases with or without the 

saltwater prevention works are considered, thereby assessing the impact of salinity intrusion 

through scenarios and structural solutions for water resources in HCMC. 
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1. Introduction 

At present, the saline intrusion is a serious problem for many local governments in 

coastal areas, in the context of increasingly complex and unpredictable climate change, 

possibly resulting in the increasing risk of saline intrusion, impacting water resources [1–3]. 

The saline intrusion from the seas to the rivers is very widespread for the coastal plains, 

especially in the dry season [4–6]. The extent of saline intrusion depends on many natural 

factors such as topographical characteristics, flow regime from upstream, the tidal regime of 

estuary, changes in rainfall, temperature and evaporation, sea–level rise trend, or human 

activities such as groundwater extraction, change of land use, destruction of mangroves [7–

11]. 

Ho Chi Minh City is surrounded by a very developed network of a total of 3,020 rivers 

and canals in a total length of 5,075km, including three main river systems, Dong Nai River, 

Saigon River, and Vam Co River [12]. With relatively flat terrain, the hydrological and 

hydraulic regimes are not only strongly influenced by the East Sea tide, but also clearly 

affected by the exploitation of terraces of reservoirs at the upstream at present and in the 

future (such as the reservoirs of Tri An, Dau Tieng, Thac Mo...) [13]. Despite several 

abundant water resources thanks to a dense network of rivers and streams, in recent years, 

water shortages are more and more seriously due to colonization and saline boundary (SB) 

moving deeply into the field as consequences of climate change. Accordingly, fresh water 

supply to the city is more and more challenging [14–16]. To deal with the above matter, the 

study of the saline intrusion on the main rivers of Ho Chi Minh City should be implemented 

in parallel with the assessment based on the climate change and sea–level rise scenarios in 

the future context for proper management and policies to ensure the sustainable socio–

economic development. Currently, the modeling method is widely applied in simulating 

saltwater intrusion in many river systems [17–18]. Some case studies have used the HD, RR, 
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and AD modules of the MIKE 11 model, all developed and supported by the Danish 

Hydraulic Institute (DHI) to model the effects of river flows and saltwater intrusion [8, 19]. 

After proper calibration and verification, the HD, RR, and AD modules of the MIKE 11 have 

been used to estimate the salt profile. Scenarios for salinity intrusion simulation were 

developed based on the Climate change and sea–level rise scenarios for Vietnam by MONRE 

[20]. Results of salinity intrusion computation for RCP4.5 and RCP8.5 scenarios up to 2050 

are shown for some cross–sections in the main Sai Gon–Dong Nai River systems.     

2. Materials and Methods 

2.1. Description of the study site 

Ho Chi Minh City is the largest metropolis in Vietnam and the main center for most 

economic activities, not only for the South region but for the whole country in general. It is 

also a hub for educational, scientific, cultural, and technological activities. The city currently 

has 24 administrative units, including 19 districts and 5 districts. Ho Chi Minh City has a 

complex natural drainage system, including many sewer lines discharging water into rivers 

and canals connecting each other. The main river system is the Dong Nai–Saigon River 

system in the east and the Vam Co River system in the west. 

2.2. Calculation of rainfall-runoff model (MIKE NAM) 

- Using Hydrometeorological data at measuring stations in the study area and 

surrounding areas, collected from the Southern Regional Hydrometeorological Station from 

January 1, 2017, to December 1, 2017: 

+ Daily rainfall data at five stations on the Saigon–Dong Nai river system: Ta Lai, Tri 

An, Tan Son Hoa, Dong Ban, and Loc Ninh. 

+ Evaporation data estimated by Blaney–Crridle method based on temperature data of 

the Tan Son Hoa station. 

+ Average daily flow data to the Tri An and Dau Tieng Reservoirs. 

- According to the river system, the river basins in the study area are divided into basins 

and sub–basins. The basins are demarcated based on the database of the digital elevation 

model (DEM) (30 m × 30 m). The sub–basins area is considered the basis for the calculation 

of mean precipitation by the Thiessen method. The precipitation means for each sub–basin 

corresponding to the rainfall stations will be used as input for the NAM model (Figure 1). 

2.3. MIKE 11 model 

+ Cross–section data: the section is defined in compliance with the national standard 

elevation on the topographic map of 1:10,000 scale as a basis for determining the location of 

the river section on the hydraulic diagram (Cross-sectional data are inherited from the topic 

of HCMC climate change response plan in 2020). 

+ The network consists of 79 large and small tributaries, 674 cross–sections, 68 points 

of entry and exit. The maximum distance dx on the tributaries is 500–1000 m, and the 

smallest is 100–200 m. 

+ The upstream boundary data are calculated from the NAM model with 5 stations, 

specifically the water level at Go Dau and Tan An corresponding to Tay Ninh and Long An 

basins, and discharge flows of Phuoc Hoa, Tri An, and The The Dau Tieng Reservoirs. 

+ The downstream boundary data are the water level at 4 stations (Soai Rap, Dinh Ba, 

Long Tau, Thi Vai) which is correlated from the water level data at Vam Kenh and Vung 

Tau stations (Figure 2). 
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Figure 1. Division of sub–basins on the Saigon–Dong Nai River system. 

 

Figure 2. Hydraulic diagram of Saigon–Dong Nai river basin. 

3. Results and Discussion 

3.1. Results of calibration and validation of NAM model for rainfall–runoff 

The calibration and verification are based on the flows to the Tri An Reservoir, the Dau 

Tieng Reservoir, and Be River “The Q data about the lake was collected at the hydro-

meteorological station of Nam Bo province. On the Be river, Q data is taken from Phuoc 
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Long hydrological station to correct upstream. And Q returned to Phuoc Hoa lake to test the 

downstream side of the river”, with the error between the calculated and measured values 

being evaluated by the coefficient of determination R2 and NSE. The results of model 

calibration and verification are presented in detail in Table 1. In addition, the basin of the 

Dau Tieng Reservoir is also calibrated and tested further for three more stages with the 

parameters of the model taken in the year of further calibration in 2016.  

The results of the correlation analysis between the measured and calculated flows are 

pretty good for the basins of Dau Tieng and Be rivers (NSE and R2 are greater than 0.65) and 

good for the Tri An Reservoir (R2 > 0.8). This result shows that the discharge process curve 

calculated from rain by NAM model is quite consistent with the measured flow process curve. 

The results of calibration and verification are presented representatively at the Tri An 

Reservoir as in Figure 3. 

In general, the above results are consistent with the hydrological conditions of the study 

area. The set of parameters achieves high reliability, which is qualified to simulate the flow 

from rainfall, corresponding climate change scenarios. The runoff generated from the rain 

and the discharge of wastewater generated from economic activities is used as the inflow of 

rivers. 

Table 1. Results of calibration and verification of NAM model. 

Basin Coefficient 
Calibration Validation 

2016 2017 2011–2015 2007–2010 2000 2010 2018 

The The 

Dau Tieng 

Reservoir 

NSE 0.752  0.657 0.7 0.669   

R2  0.65      

Be River NSE 0.867     0.717  

Tri An 

Reservoir 
R2 0.82      0.80 

 

Figure 3. Results of calibration (a) and verification (b) of MIKE NAM model at Tri An reservoir. 

(a)

(b)
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Because the article inherits the results from the climate assessment project of HCMC. 
Therefore, data collection is quite difficult, the authors can only test the dry and rainy seasons 
in 1 year.  

3.2. Calibration and validation results of the MIKE 11 model 

+ Time to calibrate the model is taken from 0:00 on April 1, 2017 to 23:00 on April 30, 

2017; then data for three days from 9:00 on April 26, 2017 to 8:00 p.m. on April 28, 2017, 

was extracted for hydraulic testing for the study area; time step ∆t = 1 minute. 

+ Initial conditions: At the initial time of taking the static water level, the flow Q = 0 

m3/s. 

+ Stations for saline calibration and verification: Cat Lai, Nha Be, Phu An, Phu Cuong, 

Vam Sat, Vam Co, Hoa An, Binh Phuoc, from 9:00 April 26, 2017, to 20:00 April 28, 2017. 

+ The time to calibrate the hydraulic model is from April 1-25, 2017. The time to test 

the hydraulic model is from April 26-28, 2017. 

+ The time to test the salinity model is from 9:00 on April 26, 2017 to 20:00 on April 

28, 2017. 

3.3. Simulation results of saline intrusion according to the scenarios 

3.3.1. Saline intrusion in Ho Chi Minh City in the current period 

The saline intrusion has been defined by the boundaries of the salinity thresholds (SB) 

corresponding to the selection criteria for the salinity limit based on the influence on the 

demand for surface water of water treatment plants in the Saigon–Dong Nai basin, as 

presented explicitly in Table 2. To analyze the spread of salinity in the river, the displacement 

of the saline boundary over each period will be considered and evaluated based on the 

inherited mapping (Figure 5). 

Table 2. The boundaries of the salinity thresholds affect the demand for surface water. 

No. 

Limits of saline zones 

correspond to salinity 

thresholds 

Criteria for selecting the salinity limit based on the 

influence on the demand for surface water usage 

1 
< 0.25‰ 

SB1 (0.25‰) 
Qualified for domestic water supply (after normal treatment) 

2 
0.25–0.5‰ 

SB2 (0.5‰) 

Qualified for domestic water supply (after normal treatment), 

conservation of aquatic plants, and other purposes 

3 
0.5–1‰ 

SB3 (1‰) 

Qualified for irrigation purposes or other uses with equivalent 

water quality requirements  

4 
1–2‰ 

SB4 (2‰) 

- Good for brackish water aquaculture 

- Yield reduction of salt–sensitive crops 

5 
2–4‰ 

SB5 (4‰) 

- Good for brackish water aquaculture 

- Yield reduction of different crops  

6 
4–8‰ 

SB6 (8‰) 

- Cultivating some types of brackish–water aquatic products 

- Yield reduction of salt–sensitive crops 

7 
8–18‰ 

SB7 (18‰) 

- Cultivating some types of brackish water aquatic products 

- Impossible for irrigation.  

8 > 18‰ Saline intrusion, unusable. 
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Figure 4. Map of saline condition in 2013 in HCMC. 

Using 2013 as the current condition is because the article inherits some results from the 

project to update the action plan for Ho Chi Minh City in 2020. 

a) Analysis of saline boundary on the Saigon River in the current condition 

- SB1 < 0.25‰: farthest to the upstream of the Dau Tieng Reservoir, passing Hoa Phu 

pumping station, but the distance between this SB and the pumping station is negligible from 

0.5–1 km. 

- SB2 0.25–0.5‰: available at Tan Hiep water plant, from SB2 position, about 10 km 

from Hoa Phu pumping station to the downstream of the Saigon River. 

- SB3 0.5–1‰: about 18 km from Hoa Phu pumping station and Binh Phuoc hydrological 

station, 5 km toward the downstream of the Dau Tieng Reservoir. 

- SB4 1–2‰: SB4 is 5 km from SB5 along the length of the Saigon River from upstream 

to downstream. 

- SB5 2–4‰: SB5 is 5 km from SB4 along the length of the Saigon River from upstream 

to downstream and 28 km from Hoa Phu pumping station and Tan Hiep water plant, and 18 

km toward the upstream of the reservoir; This SB is located near Phu An hydrological station 

and about 1km from Thu Thiem salinity measurement station toward the upstream of the Dau 

Tieng Reservoir. 

- SB6 4–8‰: SB6 is about 1 km from Cat Lai salinity measurement station toward the 

upstream. 
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- SB7 8–18‰: available at the intersection between Saigon River and Dong Nai River. 

b) Analysis of saline boundary on the Dong Nai River in the current condition  

- SB1 < 0.25‰: toward the upstream of Tri An Reservoir, SB1 goes further about 3 km 

from Hoa An pumping station.  

- SB2 0.25–0.5‰: SB2 is located between Hoa An pumping station and Thu Duc water 

plant. 

- SB3 0.5–1‰: available at the water source area of Thu Duc plant, about 10 km from 

Hoa An pumping station and about 0.5 km from Long Dai salinity measurement station 

toward the upstream of Tri An reservoir. 

- SB4 1–2‰: SB4 is available at the location of the Cat Lai hydrological station. 

- SB5 2–4‰: about 1–1.5 km from SB4. 

- SB6, SB7 are evenly distributed along the river. 

In general, from the distribution map of SB on the Saigon–Dong Nai river system in the 

HCMC area: SB1 and SB2 are evaluated to determine the area serving the domestic water 

supply after only the normal treatment process, conservation of aquatic plants, and activities 

for other purposes with similar water quality factors with salinity > 0.5‰. SB3 is assessed to 

determine the area for water use for irrigation or other purposes consistent with the salinity 

of this saline boundary. Similarly, SB4 and SB5 are suitable in conditions that can be treated 

by conventional systems and satisfied for most of the water demand for residential areas from 

SB to the upstream of the reservoir. Particularly for SB6, SB7 with high salinity < 18‰, it is 

impossible for water supply purposes or crops due to yield reduction, including salt–tolerant 

crops, but they can mainly be used for some good salt–tolerant aquatic species. 

3.3.2. Impact of saline intrusion on water resources in the context of climate change in Ho 

Chi Minh City in case of no salinity prevention works 

Under the impacts of climate change factors such as temperature, heat, rainfall, and sea–

level rise, the hydraulic regime in the river is changed, and the saline intrusion is deeper 

toward the inner field, causing changes compared to the current status. The salinity change 

and salinity spreading tend to increase gradually in the future, toward the upstream of the 

Dau Tieng Reservoir in Saigon River and the Tri An Reservoir in Dong Nai River. For each 

RCP scenario, the movement of saline boundaries in each period (year) is different, 

corresponding to sea–level rise. 

According to the sea level rise RCP4.5 and RCP8.5 with salinity risk atlas, it is shown 

that there are no significant differences between 2025 and 2030; it seems that salinity is not 

much intruded into the upstream. Particularly for the RCP scenario for the year 2050, the data 

about the sea level rise increases significantly, resulting in apparent changes in the risks of 

saline intrusion and salinity as well as the negative impacts on the domestic water supply of 

water treatment plants and regulating irrigation of canals and channels in the city. As a result, 

the study will analyze and assess the salinity changes in 2025 and 2030 in general and analyze 

separately and, more specifically, the salinity changes in 2050. The evaluation of the process 

of saline intrusion is based on the current situation and (in the context of) climate change in 

the Saigon and Dong Nai rivers from Table 3 to Table 6. 

Table 3. Risk assessment of the saline intrusion according to the RCP4.5 scenario compared with 

the current situation in the absence of structures on the Saigon River. 

Saline 

boundary 
2025 2030 2050 

Saline 

boundary 

0.25‰ (SB1) 

SB1 moves further about 0.25 km from Hoa 

Phu pumping station toward upstream of the 

SB1 moves further the Hoa Phu pumping 

station about 3.5 km compared to the 2025 

and 2030 scenarios. 
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Saline 

boundary 
2025 2030 2050 

Dau Tieng Reservoir compared to the current 

situation. 

Saline 

boundary 

0,5‰ (SB2) 

SB1 moves further into the field, about 3–5 

km from Hoa Phu pumping station toward 

upstream of the Dau Tieng Reservoir 

compared to the current situation. 

From the position from Hoa Phu pumping 

station to the upstream of Dau Tieng lake, 

it was moving about 1.5 km compared to 

the current situation and 5 km compared 

to the period of 2025–2030. 

Saline 

boundary 1‰ 

(SB3) 

SB3 is about 24–25 km from Hoa Phu 

pumping station toward downstream. 

Compared to 2013, SB3 continues to 

move upstream, about 20 km from Hoa 

Phu pumping station toward downstream. 

Saline 

boundary 2‰ 

(SB4) 

It is 35 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

Compared to 2013, it is 30km from Hoa 

Phu pumping station, moving about 5km 

more. 

Saline 

boundary 4‰ 

(SB5) 

It is 46 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

It is 45 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

Saline 

boundary 8‰ 

(SB6) 

It is 60 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

It is 56 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

Saline 

boundary 18‰ 

(SB7) 

It is 70 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

It is 67 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

Table 4. Risk assessment of the saline intrusion according to the RCP8.5 scenario compared with 

the current situation in the absence of structures on the Saigon River. 

Saline 

boundary 
2025 2030 2050 

Saline 

boundary 

0,25‰ (SB1) 

SB1 moves further about 0.25 km from Hoa Phu 

pumping station toward upstream of the Dau 

Tieng Reservoir compared to the current 

situation. 

It is 5 km from Hoa Phu pumping station 

upstream to Dau Tieng lake, increasing 4 

km more than in 2013. 

Saline 

boundary 

0,5‰ (SB2) 

SB1 moves further into the field, about 3–5 km 

from Hoa Phu pumping station toward upstream 

of the Dau Tieng Reservoir compared to the 

current situation. 

It is 9.1 km from Hoa Phu pumping station 

toward Dau Tieng lake downstream, 

increasing 7 km more than in 2013. 

Saline 

boundary 

1‰ (SB3) 

SB3 is about 24–25 km from Hoa Phu pumping 

station toward downstream 

It is 19.7 km from Hoa Phu pumping 

station toward downstream to Dau Tieng 

lake. 

Saline 

boundary 

2‰ (SB4) 

It is 35 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

It is 30 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

Saline 

boundary 

4‰ (SB5) 

It is 46 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

It is 45 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

Saline 

boundary 

8‰ (SB6) 

It is 60 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

It is 56 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

Saline 

boundary 

18‰ (SB7) 

It is 70 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 

It is 66 km from Hoa Phu pumping station 

toward downstream to Dau Tieng lake. 
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Table 5. Risk assessment of the saline intrusion according to the RCP4.5 scenario compared with 

the current situation in the absence of structures on the Dong Nai River. 

Saline 

boundary 
2025 2030 2050 

Saline 

boundary 

0,25‰ (SB1) 

SB1 moves further about 3–5 km from Hoa Phu 

pumping station toward upstream of the Tri An 

Reservoir compared to the current situation. 

Moving further upstream from Hoa An 

Pumping Station, about 8 km toward 

upstream, compared to 2013. 

Saline 

boundary 

0,5‰ (SB2) 

SB1 moves further into the field, about 6–7 km from 

Hoa An pumping station toward upstream of the Tri 

An Reservoir compared to the current situation, 

increasing about 2–3 km. 

It is 4 km from Hoa An pumping station 

toward downstream to Tri An lake, 

increasing about 5 km. 

Saline 

boundary 1‰ 

(SB3) 

It is 17.5 km from Hoa An pumping station toward 

downstream to Tri An lake, increasing about 1.5 km. 

It is 14.5 km from Hoa An pumping 

station toward downstream to Tri An 

lake, increasing about 5 km. 

Saline 

boundary 2‰ 

(SB4) 

It is 30 km from Hoa An pumping station toward 

downstream to Tri An lake. 

It is 27 km from Hoa An pumping station 

downstream to Tri An lake. 

Saline 

boundary 4‰ 

(SB5) 

It is 34 km from Hoa An pumping station toward the 

downstream to Tri An lake. 

It is 32 km from Hoa An pumping station 

toward downstream to Tri An lake. 

Saline 

boundary 8‰ 

(SB6) 

It is 40 km from Hoa An pumping station toward 

downstream to Tri An lake. 

It is 37 km from Hoa An pumping station 

toward the downstream to Tri An lake. 

Saline 

boundary 

18‰ (SB7) 

It is 52 km from Hoa An pumping station toward the 

downstream to Tri An lake. 

It is 49 km from Hoa An pumping station 

toward downstream to Tri An lake. 

Table 6. Risk assessment of the saline intrusion according to the RCP8.5 scenario compared with 

the current situation in the absence of structures on the Dong Nai River. 

Saline 

boundary 
2025 2030 2050 

Saline 

boundary 

0,25‰ (SB1) 

SB1 moves further about 3–5 km from Hoa Phu 

pumping station toward upstream of the Tri An 

Reservoir compared to the current situation. 

SB1 is 8km from the pumping station 

upstream to Tri An lake. 

Saline 

boundary 

0,5‰ (SB2) 

SB1 moves further into the field, about 6–7 km from 

Hoa An pumping station toward upstream of the Tri 

An Reservoir compared to the current situation, 

increasing about 2–3 km. 

It is 3 km from Hoa An pumping station 

toward downstream to Tri An lake, 

increasing about 6 km. 

Saline 

boundary 1‰ 

(SB3) 

It is 17.5 km from Hoa An pumping station toward 

downstream to Tri An lake, increasing about 1.5 km. 

It is 14 km from Hoa An pumping station 

toward downstream to Tri An lake, 

increasing about 5 km. 

Saline 

boundary 2‰ 

(SB4) 

It is 30 km from Hoa An pumping station toward 

downstream to Tri An lake. 

It is 27 km from Hoa An pumping station 

downstream to Tri An lake. 

Saline 

boundary 4‰ 

(SB5) 

It is 34 km from Hoa An pumping station toward 

downstream to the Tri An Reservoir. 

It is 31.5 km from Hoa An pumping 

station toward downstream to Tri An 

lake. 

Saline 

boundary 8‰ 

(SB6) 

It is 40 km from Hoa An pumping station toward 

downstream to Tri An lake. 

It is 37 km from Hoa An pumping station 

toward the downstream to Tri An lake. 

Saline 

boundary 

18‰ (SB7) 

It is 52 km from Hoa An pumping station toward the 

downstream to Tri An lake. 

It is 48.5 km from Hoa An pumping 

station toward downstream to Tri An 

lake. 
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3.3.3. Impact of saline intrusion on water resources in the context of climate change in Ho 

Chi Minh City in case of available salinity prevention works 

The Saline control gate are mainly located at the intersections of rivers entering the field. 

If the works are completed and put into operation by 2019, the effectiveness of these gates in 

salinity prevention is shown in Figures 6a–6b. 

When there are no structures to prevent salinity in normal conditions, salinity will 

increasingly encroach into the upstream area. The saline intrusion will be spread far away in 

the future, narrowing the safety level of freshwater sources, affecting the daily production 

and daily life of the local people. Thanks to the operation of 6 Saline control gate in the 

future, the salinity will be significantly reduced on small river tributaries going deep into the 

field, such as Ben Luc branch, Doi cannel – Te cannel, Phu Xuan canal (District 7), Cay Kho 

canal (Nha Be). However, the effectiveness of salinity prevention on the two main rivers 

(Saigon River and Dong Nai River) is negligible. 

In 2025, salinity at a point located 1.3 km from Phu An station, nearly 1 km from Ben 

Nghe sluice, along the Ben Luc branch (in District 1) will decrease by nearly 36% when the 

works are in operation. Similarly, the salinity concentration at a point on the Doi cannel 

branch located 1.4 km from Tan Thuan sluice along the Doi cannel branch will decrease by 

nearly 29%, showing the difference in salinity concentration in the 2 cases. On the Saigon 

River, the salinity does not change significantly during the salinity observation at any point, 

about 100 m from Phu Cuong station upstream and 500 m from Hoa Phu water pumping 

station downstream (Figure 6c). The salinity in the case of available structures increases by 

0.002% compared to the case without structures. Therefore, the Saline control gate can only 

reduce salinity into the field, reduce salinity in water for production and irrigation, but they 

are not effective for the two main rivers, Saigon River and Dong Nai River. In short, the 

effect of the works on the deep saline intrusion upstream of the main river can be negligible. 

 

The saline intrusion toward inland in the Ho Chi Minh City in the RCP4.5 scenario 2025 

in the case of operational Saline control gate is presented in below Figure 7. 

(a) (b)

(c)

Figure 5. (a) The Effectiveness of saline intrusion 

prevention of Ben Nghe gate (6.3 km from An Phu 

Station); (b) The Effectiveness of saline intrusion 

prevention on Doi channel branch (1.4 km from 

Doi channel–Sai Gon); (c) The effectiveness of 

saline intrusion prevention on Sai Gon branch (100 

m from Phu Cuong station toward upstream).  
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Figure 6. Map of saline intrusion in Ho Chi Minh City under the 2025–RCP4.5 scenario. 

4. Conclusion 

As Saigon River and the Dong Nai River are the two main rivers serving the water supply 

of the city, the saline boundaries impacting river water quality are analyzed corresponding to 

the location of the Hoa Phu raw water pumping station (Cu Chi) on the Sai Gon River and 

Hoa An station (Dong Nai) on the Dong Nai River. 

According to the current scenario, SB1 0.25‰ on the Saigon River moves the farthest to 

the upstream of the Dau Tieng Reservoir, going through Hoa Phu pumping station with a 

distance of 0.5–1 km. On the Dong Nai River, SB1 moves toward the upstream of the Tri An 

Reservoir, about 3 km from Hoa An pumping station. The differential in salinity between the 

two scenarios RCP 4.5 and RCP 8.5 in the absence of salinity compartments, on the Saigon 

River branch, respectively in 2025–2030 and 2050, according to RCP4.5, the salty border is 

0.25 ‰ away Hoa Phu station is 0.25 km in turn; 3.5 km compared to 0.25 km; 3.5 km 

according to RCP8.5. On Dong Nai river branch, compared with station Hoa An, the 
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corresponding figures are 3–5 km; 8.0 km under RCP4.5 and 3–5 km; 8.0 km according to 

RCP8.5.  

When the Saline control gate are put into operation, the saline intrusion shall decrease 

significantly on small tributaries such as Ben Luc, Doi channel–Te channel, Phu Xuan canal 

(District 7), Cay Kho canal (Nha Be) but these gates do not have many effects on the two 

main rivers, Saigon River and Dong Nai River. However, the salinity of the Saigon River 

toward upstream will increase by 0.002% compared to the case without the structure. 

Therefore, the proper usage of the surface water should be paid attention to distribute the 

surface water and rain between the two seasons reasonably to serve the daily life, economic 

activities, and operation of water treatment plants in the future with the impacts of climate 

change.  

However, the study of factors influencing saline intrusion in Ho Chi Minh city remains 

limited. Especially the regulation of neighboring reservoirs and the Tri An system from the 

upstream and the limitted of saline monitoring data. This factor necessitates a long-term 

research complex because of the climate change of the current period and is influenced by 

reservoir regulation upstream.  
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Abstract: Sampling frequency plays important role in water quality monitoring activity. A 

suitable sampling frequency could save time and cost of monitoring work. In this study, 

coastal seawater quality of the Northeast of Quang Ninh Province, Vietnam was evaluated 

by single indicator and statistical analysis of the monitored data from 2016–2019. Then the 

monitoring frequency was adjusted to match the current pollution status of the study area. 

The results showed that seawater of the area has good quality. Monitored parameters: pH, 

DO, TSS, Oil, and grease, Coliform were under the QCVN 10–MT:2015/BTNMT. The 

manager should pay more attention to NH4
+ concentration in seawater by controlling the 

pollution source of NH4+. Seawater sampling frequency should be rearranged. More 

samples should be taken at potential pollution points, while reduced in low potential 

pollution points. 

Keywords: Coastal seawater; seawater quality; sampling frequency; Quang Ninh. 

 

1. Introduction 

Monitoring seawater quality plays important role in managing and controlling pollution 

in a coastal zone. The monitored data helps managers make right decisions to adjust polluted 

activities or to expand social economic development. A suitable seawater monitoring stations 

and frequency will inform right status of seawater quality, track the change, and identify 

pollution sources. To evaluate seawater quality, many methods could be used such as WQI 

[1–2], satellite imagery [3–4], grey systems theory [5], modelling [6]. Particularly, statistical 

method could be used to analyze water quality parameters and identify pollution factors or 

pollution sources [7–8]. In Vietnam, there are some researches were performed to assess 

seawater quality by monitoring station data in the South region of Vietnam [9], in Quang 

Ninh–Hai Phong coastal area [10], in Quang Binh province [11]. These researches mainly 

focused on assessing the status of water quality. To get more values, it is necessary to further 

analyze and use monitoring data. Determination of a suitable sampling frequency is important 

to water quality monitoring. A good sampling frequency could save time and cost. In 

addition, the number of samples could have influence on the evaluation of water quality status 

[12] or the usage of data, the prediction reliability of modelling [13]. Some common methods 

could be used to calculate water sampling frequency: statistical method [14], systems analysis 

[15], non–parametric tests [16] or cost–effective selection [17]. In which, historical 

monitoring data was an important parameter to calculate or adjust sampling frequency by 

statistical analysis [14, 18].  
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The Northeast region of Quang Ninh plays important role in development of social 

economic of the province. With the increasing of rapid investment and development in the 

region, seawater quality may be affected by those activities. Current seawater monitoring 

points in the region had equal sampling frequency as 4 samples/point/year. This frequency 

does not consider the current pollution status of the region and may not timely adjust to meet 

the rapid changing of environmental quality under the impact of increasing development 

activities. Therefore, it is necessary to analyze the seawater quality of the region, then 

propose a suitable sampling frequency to match the new management requirement. 

In this research, a combination of water quality assessment by statistical analysis with 

historical monitoring data to analyze and propose a sampling frequency. The objectives of 

this study included: (1) Assessment of seawater quality of coastal zone in the Northeast 

region of Quang Ninh province from 2016–2019; (2) Calculate and adjust sampling 

frequency for monitoring points. 

2. Methods 

2.1. Study area  

This study was conducted in coastal zone in the Northeast of Quang Ninh Province. The 

data was collected from 2016–2019 in 10 monitoring points (coded as P01–P10) (Table 1 

and Figure 1). These points monitored the seawater quality through 6 parameters: pH, 

Dissolved Oxygen (DO), Total Suspended Solid (TSS), Oil and grease, Ammonium (NH4
+), 

and Coliform [19]. These parameters play important role in evaluating coastal seawater for 

beaches and aquaculture. 

Table 1. Coordinates of sampling points. 

No. Sampling points Code 
Coordinates 

Latitude Longitude 

1. Mong Duong river mouth P01 21.07112 107.366827 

2. Cam Hai, Cam Pha City P02 21.09351 107.371072 

3. Mui Chua Port P03 21.28557 107.458244 

4. Dam Ha–Dam Ha District P04 21.31621 107.629111 

5. Quang Phong, Quang Dien–Hai Ha District P05 21.37457 107.751824 

6. Quang Nghia–Mong Cai City P06 21.49848 107.817986 

7. To Chim–Hai Hoa–Mong Cai City P07 21.5111 108.038567 

8. Tra Co Beach–Mong Cai city P08 21.47793 108.029884 

9. Co To Port P09 20.96942 107.761974 

10. Vung Cat 2. 3 Group 4, Co To Town P10 20.95323 107.740462 

2.2. Methods 

2.2.1. Statistical analysis 

The collected data were analyzed using R software – a statistical programming language. 

The ggplot2 package was used to draw graphs. The monitored data was compared with the 

national technical regulation on marine water quality QCVN 10–MT:2015/BTNMT. 

2.2.2. Frequency calculation 

To calculate water sampling frequency for multiple variables and multiple stations, [14] 

introduced an equation based on comparing the weighting factors of whole monitoring 

network [14, 18]. 
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Nk = Wk × P      (1) 

where P is the total number of samples obtained through the monitoring network in a 

year; Wk weighting values of station s. 

Wk =
∑ Wi

n
j=1

n
;  Wi = (

Mi

∑ Mi
s
i=1

)     (2) 

where Wi is the weighting value of variable i at station s; Nk is the number of samplings 

at station i; Mi is the historical mean value of variables at station i; s is the number of stations; 

n is the number of variables. 

 

Figure 1. Coastal seawater monitoring points. 

3. Results and Discussion 

3.1. Coastal seawater quality 

a) pH 

The pH values of seawater in the region ranged from 7.4 to 8.4. Average and median 

were 8.0 and 7.99 respectively. All pH values of 10 points were in compliance with the 

national technical regulation on marine water quality QCVN 10–MT:2015/BTNMT (range, 

6.5 to 8.5). Figure 2 showed that the pH values of points P01, P09 and P10 were stable, while 

points P06, P07 and P08 were more fluctuated in 4 years. 

b) DO 

The mean value of DO concentration was 6.95 mg/l (range, 5.9 mg/l to 8.3 mg/l (Figure 

3). DO concentration of all points were higher than the QCVN 10–MT:2015/BTNMT (DO 

≥ 5 mg/l for beach and water sports, DO ≥ 0.4 mg/l for Aquaculture). Most of DO values 

concentrated at 6.5 mg/l to 7.5 mg/l. The concentration indicated that DO in seawater is 

suitable to any seawater using purposes. 

c) TSS 

Figure 4 showed the distribution of TSS concentrations. TSS values ranged from 2.5 

mg/l to 57.2 mg/l. The mean value of TSS was determined to be 13.6 mg/l. About 98.7% 
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TSS concentration were under the QCVN 10–MT:2015/BTNMT (TSS ≤ 50 mg/l). TSS 

concentration at P03 and P08 were more fluctuated than the others. 

 

Figure 2. pH values (2016–2019). 

 

Figure 3. DO concentration (2016–2019). 

d) NH4
+ 

NH4
+ concentration was found to be the most polluted parameter in the region. The mean 

and median values (0.38 mg/l and 0.286 mg/l respectively) were all higher than QCVN 10–

MT:2015/BTNMT for marine species protection and aquaculture (NH4
+ ≤ 0.1 mg/l) but lower 

than QCVN 10–MT:2015/BTNMT for beach and watersport (NH4
+ ≤ 0.5 mg/l). The TSS 
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concentration were also highly fluctuate from 0.036 mg/l to 0.952 mg/l (Figure 5). About 

24.67 % NH4
+ concentration was lower than the QCVN 10–MT:2015/BTNMT (≤ 0.1 mg/l) 

and 62.67% concentration lower than the QCVN 10–MT:2015/BTNMT (≤ 0.5 mg/l), 

concentrated in 2017 with the mean value of 0.343 mg/l. However, in 4 years, i.e., 2016–

2019, the mean value of NH4
+ concentration was still lower than the standard.  

Domestic wastewater released from channel and river flowing through community was 

identified as pollution sources of NH4
+. To control NH4

+ concentration, it is necessary to 

collect and treat domestic wastewater before discharging to coastal zone. 

 

Figure 4. TSS concentration (2016–2019). 

 

Figure 5. NH4
+ concentration (2016–2019). 
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e) Coliform 

In 4 years, 2016–2019, 99.32% Coliform samples were lower than the QCVN 10–

MT:2015/BTNMT (1000 NPM/100ml). The Coliform concentration were very highly 

fluctuated from 3 NPM/100ml to 1500 NPM/100ml (Figure 5). Points with high Coliform 

concentration appeared near river mouth (P02 and P07), while monitoring points located in 

island had lower Coliform concentration (P05, P09 and P10). Average Coliform 

concentration in 4 years meet water quality requirement for all using purposes. 

 

Figure 6. Coliform concentration (2016–2019). 

f) Oil and grease 

All the monitoring points had lower oil concentration than the QCVN 10–

MT:2015/BTNMT (0.5 mg/l). This result indicated that, inspire of high ship activities in the 

region, the oil and grease concentration still very low (Figure 7). This well supports for the 

development of the ecosystem in the coastal zone of the region. 

 

Figure 7. Oil and grease concentration (2016–2019). 
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3.2. Sampling frequency 

a) Weighting values of variables 

Comparing weighting values of pH, DO, TSS, NH4+, Oil and Coliform among 10 

monitoring points indicated that points P09 had the highest weighting value of pH, DO and 

Oil, while TSS, NH4+, and Coliform were P08, P07, and P01, respectively (Table 2 and 

Figure 8). The high weighting value of variables in 10 points (Wk) were P07, P01, P02, and 

P08. It indicated that sampling frequency of these points should be increased while the P09 

and P10 should be decreased. 

Table 2. Weighting values of variables. 

Point WpH WDO WTSS WNH4
+ WOil WColiform Wk 

P01 0.098 0.099 0.126 0.160 0.107 0.146 0.122 

P02 0.098 0.101 0.077 0.118 0.112 0.210 0.119 

P03 0.100 0.099 0.093 0.099 0.096 0.113 0.100 

P04 0.100 0.099 0.105 0.086 0.091 0.044 0.088 

P05 0.101 0.099 0.066 0.102 0.091 0.127 0.098 

P06 0.100 0.100 0.087 0.068 0.102 0.092 0.091 

P07 0.099 0.098 0.165 0.170 0.107 0.122 0.127 

P08 0.101 0.101 0.171 0.120 0.086 0.095 0.112 

P09 0.102 0.102 0.051 0.042 0.122 0.036 0.076 

P10 0.102 0.101 0.059 0.034 0.086 0.015 0.066 

 

Figure 8. Weighting values of pH, DO, TSS, NH4, Oil and grease, Coliform and Wk. 

b) Sampling frequency 

The Wk indicated that point P01, P02, P07, and P08 were more polluted than the others, 

while point P09 and P10 had better seawater quality. Figure 9 showed the sampling frequency 

of 10 points in a year, in which the frequency should be increased at point P01, P02, and P07, 

while decreased at point P09 and P10. 
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Figure 9. Proposed sampling frequency. 

In environmental monitoring and management, the places with more polluted than the 

others, more actions should be considered to control pollution sources [14, 18]. In which, 

monitoring activities should be increased to monitor and track the sources as well as the 

changes of pollution. The calculated sampling frequency indicated that the monitoring 

activities should be focused on P01, P02 and P07, while reduced in P9 and P10.  

4. Conclusion 

Seawater in the study area has good quality. In 6 monitored parameters in 4 years, 2016–

2019, (pH, DO, TSS, Oil and grease, NH4
+, Coliform), 5 parameters were under the QCVN 

10–MT:2015/BTNMT. However, it had a signal of NH4
+ pollution. Manager should pay 

more attention to NH4
+ concentration in seawater of the region by controlling pollution 

source of NH4
+. Sampling frequency should be rearranged. More samples should be taken at 

potential pollution points P01, P02 and P07, while reduced in P09 and P10. Industrial and 

domestic wastewater near P01, P02, P08 and P09 must be treated before releasing. Data series 

of this research were short so the research results were limited. 
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Abstract: Simulation of Land use/Land cover (LULC) change has been conducted 

extensively in the past with varying techniques and methodologies with Markov Chain 

incorporating Cellular Automata approach among those. The Markov–Cellular Automata 

(Markov_CA) model has been applied worldwide, however, model parameter calibration is 

site–specific. In Viet Nam, research on LULC change a pressing issue given the rapid 

socio–economic development. Research on LULC change is a necessary starting point for 

impacts assessment on water resources, land resources, ecosystems, environment, etc. 

However, what we lack is a method for modeling our insights to simulate LULC 

fluctuations and to project future LULC. Therefore, this article offers a way to combine 

known problems to produce a new result. The change of LULC for the period 2005–2015 

will be simulated and will result in a prediction of the LULC of 2030. In addition, the 

calibrated Markov_CA model adapted to the study area will also be a valuable reference for 

employment in similar areas. Finally, the expected results and the calibrated model are 

validated by the Kappa coefficient and provide a good level of agreement. 

Keywords: Land use/Land cover Change; Markov Chain; Cellular Automata; Ca River 

Basin; Viet Nam. 

 

1. Introduction 

Land change science has emerged as a fundamental component of global environmental 

change and sustainability research [1]. Land use/land cover (LULC) has interaction with soil, 

water resources, biodiversity, ecosystem, climate [2]. Changes in land use and land cover 

will consequently result in the changes of the latter. LULC changes are often caused by two 

influencing factors: anthropogenic and natural [3]. Human–induced land cover change such 

as deforestation has been a major contributor to increasing CO2 concentration [4], the rapid 

expansion of agriculture reduce available freshwater given the intensive water use nature of 

agriculture (70% of total freshwater used by humankind), land exploitation disrupts the biotic 

function of soils [2]…. However, these changes can also be caused by natural factors, in 

particular vegetation cover [3]. Therefore, detecting and projecting LULC dynamics is 

necessary.  
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Recent advances in remote sensing data and growing advances in their temporal, spatial, 

and spectral resolutions provide useful data and tools for the detection of changes on LULC 

at different scales [5]. Remote sensing and geographical information system (GIS) together 

can provide an accurate depiction of changes in LULC [6], while remaining cost–effective 

[7].  

A typical approach to simulate and predict LULC changes is to investigate the factors 

contributing to the land transitions and to provide a probabilistic prediction of where the 

changes may occur through modeling [5, 8]. There are various modelling approaches for the 

simulation and exploration of LULC changes [9–10]. According to [11] a set of 19 land–use 

models were reviewed in detail as representative of the broader set of models identified from 

the more comprehensive review of the literature. They included Markov models, Cellular 

Automata models, logistic regression models, econometric models, weights models, etc. 

Markov model is stochastic modeling that uses evolution from “t–1” to “t” to project 

probabilities of changes for a future date “t+1” [12]. However, a stochastic Markov model is 

not appropriate because it does not consider spatial knowledge distribution within each 

category and transition probabilities are not constant among landscape states; so it may 

forecast the right magnitude of change but not the right direction [13]. This deficiency of the 

Markov model can be offset through the integration with other spatial component models 

[14]. Hence, the Cellular Automata Markov model combines the concepts of Markov Chain, 

Cellular Automata, Multi–Criteria Evaluation and Multi–Objective Land Allocation [8] is an 

interesting approach to modeling both spatial and temporal changes. [8] also determined that 

Cellular Automata Markov gave the approximate results to Multi–Layer Perceptron Markov 

[15] and outperformed Stochastic Markov in various validation techniques including: per 

category method, kappa statistics, components of agreement and disagreement, three map 

comparison, and fuzzy method. 

The article aims to combine the scientific basis of the Markov–Cellular Automata 

method and the practice of the Ca River basin to find the influencing factors and model 

parameters to simulate the change of land cover in the Ca River basin. At the same time, the 

results of the article are the future land cover in 2030 of the Ca River basin will also 

supplement the data source – which is still lacking, to serve the planning and management of 

water resources in this area. 

2. Study area and data used  

2.1. Description of the study area 

The Ca River system is a transnational basin originating from the upper 2000 m high 

mountain range in Xieng Khuang province of Laos, flowing northwest–southeast before 

entering the North Central of Viet Nam and pouring into the sea at the Hoi estuary. The Ca 

River system is located between 18o15’50” to 20o10’30” north latitude; and 103o45’20” to 

105o15’20” east longitude. The outlet of the basin is at 18o45’27” north latitude; and 

105o46’40” east longitude. The starting point of the Ca River system within Viet Nam is at 

19o24’59” north latitude; and 104o04’12” east longitude [16]. 

The mainstream of the Ca River system is approximately 513 km in length, of which the 

length of the reach within Viet Nam’s territory is 361 km long [17]. The mainstream flows 

through most parts of Nghe An Province, known as the Ca river. In Anh Son District, the 

river receives tributary is the Hieu River. Downstream of the Ca River is its confluent with 

the La river flowing from Ha Tinh Province. From this reach to the sea, the river is called the 

Lam river (Figure 1).  

The basin area within Viet Nam is 17,730 km2 in a total basin area of 27,200 km2 [18]. 

Every year, the basin receives an average precipitation of 1100 ÷ 2500 mm. In the large 

rainfall centers such as upstream of Hieu, La Rivers, average annual rainfall could be as high 
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as 2000 ÷ 2400 mm. Land cover in the river basin composes of 44% forest, 16% paddy rice, 

2% vegetable and crops, 38% others [19]. 

 

Figure 1. Ca River Basin. 

2.2. Data used  

2.2.1. Remote sensing data 

In order to study how the landscape has changed over the 2005–2015 period, land cover 

maps of 2005–2010–2015 should be developed. The maps are based on LANDSAT image 

data from the United States Geological Survey (USGS). The collected images were 

LANDSAT 5 TM and LANDSAT 8 OLI/ TIRS with the same resolution of 30 m (Table 1), 

where the image of path 127 rows 47 was the largest covering, approximately 80% of the 

whole Ca river basin. Selected images based on the criteria: low cloud cover, no “scan line” 

error, the time of the image is not too far apart, especially the images 127–47. 

The Landsat 5 TM images consist of six spectral bands with a spatial resolution of 30 

meters for Bands 1–5 and 7. Landsat 8 OLI and TIRS images consist of nine spectral bands 

with a spatial resolution of 30 meters for Bands 1 to 7 and 9. The ultra–blue Band 1 is useful 

for coastal and aerosol studies. Band 9 is useful for cirrus cloud detection. The resolution for 

Band 8 (panchromatic) is 15 meters. Thermal bands 10 and 11 are useful in providing more 

accurate surface temperatures and are collected at 100 meters [20]. For LULC classification, 

images are collected as shown in (Table 1). High spatial resolution images from Google 

Earth and current land use status map published by the Department of Survey, Mapping and 

Geographic Information Viet Nam are used to validate the results. 

Table 1. Description of the data sources and types used in this study. 

Year Data type and resolution Path–row Date Source 

2005 Landsat 5 TM 

30 m 

126–47 

126–48 

127–46 

14th July 2005 

09th April 2005 

18th May 2005 

https://earthexplorer.usgs.gov/ 

127–47 18th May 2005 

128–46 23rd April 2005 

128–47 07th April 2005 
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Year Data type and resolution Path–row Date Source 

2010 Landsat 5 TM 

30 m 

126–47 

126–48 

127–46 

12th July 2010 

12th July 2010 

08th Nov 2010 

https://earthexplorer.usgs.gov/ 

127–47 08th Nov 2010 

128–46 21st April 2010 

128–47 30th Oct 2010 

2015 Landsat 8 OLI/TIRS 

30 m 

126–47 

126–48 

127–46 

11th Aug 2015 

28th Sept 2015 

30th May 2015 

https://earthexplorer.usgs.gov/ 

127–47 30th May 2015 

128–46 28th Oct 2015 

128–47 28th Oct 2015 

2.2.2. Ancillary data and field data (GPS) 

a) Digital Elevation Model–DEM 

ASTER Global Digital Elevation Model 2.0 data (GDEM 2.0) is a product of the 

Ministry of Economy, Trade, and Industry (METI) and National Aeronautics and Space 

Administration (NASA) collected from the US Geological Survey (USGS). GDEM 2.0 was 

announced by METI and NASA in mid–October 2011, inheriting almost all the features of 

GDEM 1.0 with a resolution of 30 m, covering from latitude 83o North to 83o South. But 

GDEM 2.0 has a higher horizontal resolution by using a 5×5 correlation kernel instead of 9×9 

as used for GDEM 1.0. GDEM 2.0 has a total accuracy of 17 m compared to 20 m of GDEM 

1.0 along with a 95% certainty [21] (ASTER–GDEM, October 2011). 

The DEM data for the study area were collected from latitude 18o to 19o North, longitude 

103o to 105o East. The ArcSWAT tool is then used to calculate flow direction, accumulate 

flow, create sub–basin area, create flow net, discharge outlet, etc [22]. 

b) Current land use status map 

Beginning in 1999, under Directive 24/1999/CT–TTg of the Prime Minister of Viet Nam 

on land inventory is issued in 2000. Since then, the inventory and mapping of current land 

use status have been performed in 2005, 2010, 2015 (Figure 2). They are valuable ancillary 

references for LULC classification. 

The current land use status map is a map showing the distribution of land categories 

according to the regulations on an inventory of land use purposes at the time of land 

inventory. The current land use status map is drawn up on the basis of the cadastral map, in 

comparison with the field data and land inventory data; In case no cadastral map is available, 

use aerial photographs or high–resolution satellite images converted into orthogonal 

photographs combined with field data and land inventories to make the current land use 

status map; In case there are no such maps, current land use status map of the previous period 

is used and also will be checked with field data and land inventory data. 

The land cover based on use purpose includes agriculture production, forestry, 

aquaculture, salt production, other agricultural, built–up, specialized (eg.: State’s office, 

defence, and security, transport, medical, education, etc.), rivers and water surfaces, bare and 

unused land. They can be regrouped into 5 classes: Forest, Agriculture, Built–up, Waterbody, 

and Bare area (Figure 2). 
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c) Field data  

Ground data is collected for classification and verification of classification results. The 

total number of samples acquired is 120 samples. Because the latter works related to three 

periods, all the ground data were consolidated; care was taken to ensure that areas that had 

undergone a change (e.g., burn regeneration) were excluded from the investigation. Through 

consultation with local people, five classes were sampled – Forest, Agriculture, Built–up, 

Waterbody, Bare area – with about 20 ground data for each class. Some test data is 

additionally collected using Google Maps by random points algorithm. 

 

Figure 3. Location of ground data. 

(a) (b)

(c)

Figure 2. Current land use status map of 

Ca River basin: (a) 2005; (b) 2010; (c) 

2015. 
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3. Theoretical background of the method used 

3.1. Maximum Likelihood classification 

The classification method used is the Maximum Likelihood Classification (MLC), 

which is one of the methods of the Supervised Classification [7, 23]. This method is based on 

a given set of sample pixels and hence identifies pixels with the same spectral characteristics. 

Next, the estimated (Gaussian) probability density function is used to identify other pixels of 

the same land use/land cover [24]. The MLC principle also can be found in Foody and 

Strahler’s researches [24–25]. This is a commonly used method of image classification and 

provides relatively high classification accuracy. 

In this study, the Landsat data were classified with the maximum likelihood decision rule 

and some ancillary data (e.g., DEM, land use data, vegetation index, and textural analysis of 

the Landsat images) were combined through an expert (or hypothesis testing) system to 

improve the classification accuracy [26]. Considering the spectral characteristics of the 

satellite images and existing knowledge of land use/land cover of the study area, five LULC 

categories were identified and classified for 2005, 2010, and 2015 (Table 2). 

Table 2. LULC categories distributed for the classification (Circular 08/2007/TT–BTNMT). 

LULC category Description 

Forest Land with natural forest or planted forests meeting the forest standards (e.g., 

production forests, protection forests, and special–use forests). 

Agriculture Land for agriculture production including Land for planting annual crops (e.g., paddy 

land, grassland used for breeding, other annual crops); Land for perennial crops (e.g., 

orchards, perennial crops). 

Built–up Land for construction of dwelling houses, construction of works, land for offices of 

agencies and non–business works; land protection, security. 

Waterbody Land for rivers and streams and specialized water surfaces, coastal water surface. 

Bare area Land with no purpose of use including unused plain land, unused hill or mountain land, 

Rocky Mountains without forests. 

3.2. Markov Chain 

Markov process is a special random moving from one state to another state at each time 

step via the use of transition probability matrices [14, 27]. The transition probability matrix is 

calculated by assuming that probability distribution over the next state only depends on the 

current state, but not on previous ones [10]. In this study, a probability matrix based on the 

likelihood of the LULC variations between 2005, 2010, and 2015 was used to predict the 

LULC map in 2030. The transition matrix can be presented as follows [14]:  

𝑃 = (𝑃𝑖𝑗) = |

𝑃11𝑃12 … 𝑃1𝑛

𝑃21𝑃22 … 𝑃2𝑛

…
𝑃𝑛1𝑃𝑛2 … 𝑃𝑛𝑛

| 0 ≤ 𝑃𝑖𝑗 ≤ 1 ∑ 𝑃𝑖𝑗 = 1𝑛
𝑖=1    (1) 

where P is the transition probability matrix, 𝑃𝑖𝑗  is the probability of the ith LULC 

changing to jth LULC from initial year to illation year and n is the number of LULC classes. 

The Markov chain model is very powerful to determine the possibility of land–use 

change between two time periods. However, the Markov chain model cannot provide the 

spatial distribution of occurrences of land–use change [28]. 
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3.3. Cellular automata 

Generally, Cellular automata (CA) models aim to simulate the real nature regulations. 

Land–use change modeling using the CA technique is one of the preferred methods because 

it gives explicit spatial modeling results based on defined transition rules [23]. A CA consists 

of discrete cell space, in which states characterize every cell. [29] define a simple CA to 

include the following components: (1) a grid space L on which the model operates, (2) cell 

states Q in the grid space, (3) transition rules f, which determine the spatial dynamic process, 

(4) status of the neighborhood ∆ that influences the central cell. Hence, the spatiotemporal 

changes of state in a system can be described as [30]:  

A = [L,Q, ∆, f]        (2) 

Each Q cell of L grid space will change their state in discrete time steps. The state of a 

cell Q depends on its neighborhood ∆ (the surrounding cells) and the corresponding f 

transition rules. However, the most important concern in the CA model is defining 

appropriate transition rules f based on training data that controls the model [31]. 

3.4. Accuracy assessment 

There are many accuracy assessment methods that have been discussed in the remote 

sensing context e.g., [32–35], but the most widely proposed and used method is confusion 

matrix or error matrix. A measurement termed “percentage of cases correctly allocated” 

derived from a confusion matrix has been used to measure classification accuracy [36]. The 

accuracy of the individual class may be derived from the matrix by relating the number of 

cases correctly allocated to the class to the total number of cases of that class (Figure 3). This 

leads to two concepts: user’s accuracy and producer’s accuracy. The user's accuracy provides 

the user information on the accuracy of the LCLU data against actual data. Producer’s 

accuracy indicates the percentage of samples of a certain (reference) class that were correctly 

classified [37]. These accuracies are calculated based upon the confusion matrix’s row or 

column [38]. 

 

                  Actual Class 
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 A B C D ∑ 

A nAA nAB nAC nAD nA+ 

B nBA nBB nBC nBD nB+ 

C nCA nCB nCC nCD nC+ 

D nDA nDB nDC nDD nD+ 

∑ n+A n+B n+C n+D n 

User’s accuracy = 
n𝑖𝑖

n𝑖+
        (3) 

Producer’s accuracy = 
n𝑖𝑖

n+𝑖
       (4) 

Figure 4. Error matrix with nij representing the proportion of predicted class i and the actual class j. 

On the issue of the chance of agreement, Cohen’s kappa coefficient has been used and be 

adopted as a standard measure of classification accuracy [39]. Kappa takes the chance 
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agreement into account and Kappa adjusts the percentage correct measure by subtracting the 

estimated contribution of the chance agreement [40]. The definition of Kappa (k) is: 

k =
p0− pe

1− pe
         (5) 

where p0 is the observed proportion correct, pe is the expected proportion correct due 

to change. 

4. Proposed methodology for Spatial and Temporal Modeling of Land Cover Change at 

the Ca River Basin (North Central Viet Nam) 

This study employed an integrated Markov – Cellular Automata (Markov–CA) model to 

predict LULC changes for the Ca River basin in the target years 2030. Data preprocessing 

and format unification were achieved using GIS, which provides numerous functions for 

visualizing and analyzing the data [41]. Markov–CA model is applied by TerrSet, developed 

by Clark Labs at Clark University, is an integrated geospatial software with the ability to 

incorporate the IDRISI GIS analysis for monitoring and modeling purposes [42]. In general, 

the flow chart of the methodology is summarized in (Figure 5).  

 

Figure 5. Workflow showing the methodology in the study; *MCE–WLC: Multi–criteria 

evaluation–Weighted linear combination. 

In the first phase, the Landsat images are classified and LULC layers are prepared. In the 

second phase, the Transition Probability Matrix and Transition Areas are calculated with 

Markov Chain Analysis. At the same time, factors and constraints are set up for each land–

use class and fuzzy functions are applied for each factor and assigned Boolean values (0 or 1) 

for constraints. Then Analytical Hierarchy Process and Pairwise Comparison are used to 

assign the weight of each factor. Weighted factors and Boolean constraints are used in the 

MCE–WLC function to generate suitability maps for each LULC type. In the third phase, all 

previous components are thrown into the Cellular Automata module and output to the 

projected LULC map of the next period (2015). In the validation phase, the projected LULC 
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map is compared to the LULC map on the agreement level by the Kappa coefficient. If the 

validation results indicate that a bad agreement, the Weighted factors, and Boolean 

constraints will be reconsidered. Otherwise, the model is ready to predict LULC maps in the 

future. 

5. Result  

5.1. Image processing and classification 

For an accurate assessment of LULC between 2005 and 2015, atmospherically–

corrected surface reflectance Landsat 5 TM and Landsat 8 Operational Land Imager (OLI) 

and Thermal Infrared Sensor (TIRS)  images were collected from the United States 

Geological Survey (USGS) website. All scenes were verified for geometric accuracy and all 

data were projected on WGS 1984, UTM zone 48N.  

Images were stacked, subset, and analyzed in ENVI, ArcGIS software, and classified 

using the maximum likelihood algorithm. Supervised approaches using a maximum 

likelihood classifier algorithm were applied for the extraction of LULC. A modified land–

cover classification system was used for remote sensing data as recommended by [43] and 5 

classes were identified: built–up, forest, agriculture, waterbody, bare area (Table 2). 

Segmentation provides an approach to extracting features from imagery based on 

objects. These objects are created via an image segmentation process where pixels in close 

proximity and having similar spectral characteristics are grouped into a segment. Segments 

exhibiting certain shapes, spectral, and spatial characteristics can be further grouped into 

objects – meaningful object–oriented feature class. The result is a grouping of image pixels 

into a segment characterized by an average color.  

A supervised classification requires collecting training samples as the basis for the 

maximum likelihood algorithm speculating other pixels of the same class. The more accurate 

the data collected, the more accurate the classification. Bands composite method is widely 

used in remote sensing to support that. Each composite has its advantages in classifying 

LULC. A composite image using bands 4, 3, 2 in Landsat 5 TM images or bands 7, 6, 5 in 

Landsat 8 for the red, green, blue channels, respectively will be easier to detect roads, water–

body, and agriculture class. Other composite images are also used to expose other land 

classes e.g. bands 5, 4, 3 or 4, 5, 3 in Landsat 5 TM or 6, 5, 4 in Landsat 8 for forest 

classification. The results are presented in (Figure 6). 

 

Figure 6. The classification map of LULC (a) 2005, (b) 2010, (c) 2015. 

(a) (b) (c)
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5.2. Landuse/landcover classification and analysis 

Accuracy assessment has been used to evaluate the accuracy of classified data. 175 test 

samples were selected, of which 90 samples were GPS points collected in the field, the rest 

were randomly selected points from Google Maps. The study calculated and evaluated PA, 

UA, CA, and kappa index for classification data of 2005, 2010, and 2015. The results are 

shown in Table 3. 

Table 3. Accuracy assessment of the Land use/Land cover classification using the validation dataset 

PA: Producers Accuracy; UA: Users Accuracy; CA: Classification Accuracy. 

Land use/Land cover class 
2005 2010 2015 

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Agriculture 68.40 74.28 77.77 80.00 83.33 85.71 

Bare area 74.19 65.71 84.85 80.00 86.11 88.57 

Forest 78.38 82.86 80.00 91.43 91.67 94.29 

Waterbody 87.88 82.86 94.44 97.14 100 100 

Built–up 77.78 80.00 93.33 80.00 93.75 85.71 

Overall CA (%) 77.14 85.71 90.86 

Kappa index 0.7143 0.8214 0.8857 

Accordingly, the PA and UA of each class are greater than 75% for the classification 

data of 2010 and 2015. Particularly for 2005, the PA of agriculture class is only 68.40%, the 

UA of bare area class is only 65.71%, however, PA and UA of other classes still reach over 

75% for all 3 years. Overall Classification Accuracy of classification data for 2005, 2010 and 

2015 is 77.14%, 85.71%, 90.86%, respectively. The Kappa index for 2005 data is 0.71, 2010 

is 0.82, 2015 is 0.88. The CA and Kappa index of 2005 was relatively lower than other years 

can be explained by the fact that test data was collected in 2018, so there are certain 

differences compared to 2005. 

5.3. Generation of Transition Probability Matrix (TPM), Transition Area Matrix (TAM) 

a) TPM 

A transition probabilities matrix determines the likelihood that a cell or pixel will move 

from a land–use category or class to every other category from date 1 to date 2. This matrix is 

the result of cross–tabulation of the two images adjusted by the proportional error and is 

translated in a set of probability images, one for each land–use class [12]. As mentioned 

above, TerrSet software is one of the best platforms to conduct CA–Markov model, which is 

developed by Clark Labs in the U.S. Hence, transition probabilities matrix are built from the 

land–use/land–cover images of 2005–2010 and 2010–2015 by ArcGIS and TerrSet software 

(Table 4). 

Table 4. Transition probability matrix of 2005–2010 and 2010–2015 periods (%). 

 Agriculture 

(%) 

Bare Area 

(%) 

Forest 

(%) 

Water Body 

(%) 

Built–up 

(%) 

2005–2010 Agriculture 42.98 7.14 38.58 1.76 9.54 

 Bare Area 35.74 17.35 43.15 0.39 3.37 

 Forest 22.53 5.97 70.52 0.37 0.61 

 Water Body 24.07 0.63 7.92 63.22 4.15 

 Built–up 18.75 3.15 5.71 1.96 70.43 

2010–2015 Agriculture 63.89 4.26 21.69 1.20 8.96 
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 Agriculture 

(%) 

Bare Area 

(%) 

Forest 

(%) 

Water Body 

(%) 

Built–up 

(%) 

 Bare Area 25.76 66.40 4.70 0.38 2.75 

 Forest 24.81 3.34 70.76 0.47 0.63 

 Water Body 15.00 0 0 85.00 0 

 Built–up 0 0 0.01 15.97 84.02 

Table 4 shows that the transition probability of agriculture and bare–area is higher than 

forest, built–up, and water–body in the 2005–2010 period. Built–up and water body has only 

little probability to change to another type of land cover, about 15% in the 2010–2015 period.  

b) TAM 

A transition area matrix that records the number of cells or pixels that are expected to 

change from each land–use class to each other land–use class over the next period. This 

matrix is produced by the multiplication of each column in the transition probability matrix 

by the number of cells of corresponding land use in the later image [12]. Overlapping of land 

cover maps in 2005–2010 and 2010–2015 (Figure 6). Set the time interval between two maps 

to be five years, the proportional error to 0.15 in case of Maximum Likelihood Classification. 

The transition area matrix is presented in (Table 5). 

Table 5. Transition area matrix of 2005–2010 and 2010–2015 periods (pixel). 

 Agriculture 

(pixel) 

Bare Area 

(pixel) 

Forest 

(pixel) 

Water Body 

(pixel) 

Built–up 

(pixel) 

2005–2010 Agriculture 3,511,522 583,006 3,151,858 144,081 779,401 

 Bare Area 744,148 361,252 898,504 8,171 70,201 

 Forest 4,778,388 1,265,217 14,955,883 78,376 129,558 

 Water Body 95,896 2,527 31,554 251,882 16,539 

 Built–up 309,583 51,943 94,306 32,381 1,162,909 

2010–2015 Agriculture 5,974,382 398,421 2,028,508 112,114 837,973 

 Bare Area 579,574 1,494,112 105,851 8,601 61,880 

 Forest 4,479,663 602,590 12,778,159 84,471 114,425 

 Water Body 81,596 0 0 462,369 0 

 Built–up 19 56 169 358,662 1,886,814 

Table 5 shows a clearer view of how many pixels have changed from a class to another 

class. Specifically, the number of pixels in the forest class has the greatest change in both 

phases, followed immediately by the agriculture class. The class that has the least change is 

the water body. 

5.4. Suitability Map  

Suitability maps present the probability of suitability of a pixel belonging to the 

corresponding LULC class. They range from 0 to 255 with 255 being the most likely and 0 is 

unlikely. Each suitability map is created by transition rules that are formed by the linkage 

between socioeconomic, ecological, and spatial variations (e.g. built–up tends to develop 

near the road). Besides, there are also restrictions on each type of LULC class (e.g. forest 

areas are planned for conservation). Therefore, factors and constraints are two driving forces 

of change that determine which lands to be considered for further development. 
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In this study, slope, digital elevation model (DEM), distance to water bodies, distance to 

main roads were set as driving factors, but also there were constraints considered (e.g. water 

and built–up represented constraints for transition to bare–area). They were chosen because 

of the similarity in their use in many previous studies such as [5, 12, 15, 28, 44–47] and the 

author’s knowledge of the study area. The constraints and factors were standardized into a 

Boolean (0 and 1) character and a continuous scale of suitability from 0 (least suitable) to 255 

(most suitable), respectively. To do that, three types of fuzzy membership function (linear, 

sigmoidal, and J–shaped) and control points were determined as a necessity to measure the 

scale of potential suitability for each class (Table 6). Selection of the type of fuzzy 

membership function and control points is prone to subjectivity and can change according to 

the knowledge of decision–makers [15]. A fuzzy set theory can be found at [48–50]. 

Table 6. Standardization of factors by Fuzzy module. 

Class Factors Functions Control Points 

Agriculture 

Built–up 

Slope J–shaped 

0 degree highest suitability 

0–20 degree decreasing suitability 

>20 degree no suitability 

DEM J–shaped 

0 m highest suitability 

0–350 m decreasing suitability (Agriculture) 

0–150 m decreasing suitability (Built–up) 

> 350 m no suitability (Agriculture) 

> 150 m no suitability (Built–up) 

Distance to rivers Sigmoidal 

< 1.5 km highest suitability 

1.5–5.5 km decreasing suitability 

> 5.5 km no suitability 

Distance to main roads J–shaped 

< 0.2 km highest suitability 

0.2–5 km decreasing suitability 

> 5 km no suitability 

Waterbody 

Slope J–shaped 

0 degree highest suitability 

0–15 degree decreasing suitability 

> 15 degree no suitability 

DEM J–shaped 

0 m highest suitability 

0–300 m decreasing suitability 

> 300 m no suitability 

Distance to rivers Sigmoidal 

< 1 km highest suitability 

1–5 km decreasing suitability 

> 5 km no suitability 

Forest 

Bare area 
Slope Sigmoidal 

< 5 degree no suitability (Forest) 

< 20 degree no suitability (Bare) 

5–18 degree increasing suitability (Forest) 

20–40 degree increasing suitability (Bare) 

> 18 degree highest suitability (Forest) 

> 40 degree highest suitability (Bare) 
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Class Factors Functions Control Points 

DEM Sigmoidal 

< 150 m no suitability (Forest) 

< 1300 m no suitability (Bare) 

150–700 m increasing suitability (Forest) 

1300–1700 m increasing suitability (Bare) 

> 700 m highest suitability (Forest) 

> 1700 m no suitability (Bare) 

Distance to main roads Sigmoidal 

< 1 km no suitability 

1–10 km increasing suitability 

> 10 km highest suitability 

Analytical hierarchy process and pairwise comparison were then applied to develop a set 

of relative weights for a group of factors in a multi–criteria evaluation. The weights were 

developed by providing a series of pairwise comparisons of the relative importance of factors 

to the suitability of pixels for the activity being evaluated. These pairwise comparisons were 

then analyzed to produce a set of weights that sum to 1 [42]. The procedure by which the 

weights are produced follows the logic developed by [51–52]. The larger weight denoted a 

more important criterion in terms of overall factors (Table 7). 

Table 7. Factors and their weights used in the construction of suitability maps. 

Factors Forest Agriculture Built–up Water body Bare area 

Slope 0.5917 0.1740 0.5232 0.3874 0.1571 

DEM 0.3332 0.2696 0.2976 0.1692 0.2493 

Distance to main roads 0.0751 0.0795 0.1222  0.5936 

Distance to rivers  0.4768 0.0570 0.4434  

Consistency ratio 0.01 0.02 0.03 0.02 0.05 

Then, the Multi–Criteria Evaluation (MCE) module was used to make decisions which is 

a choice between alternatives. In an MCE, an attempt is made to combine a set of criteria to 

achieve a single composite basis for a decision according to a specific objective. Through a 

Multi–Criteria Evaluation, these criteria images representing suitability may be combined to 

form a single suitability map from which the final choice will be made [42]. Weighted linear 

combination (WLC) methods are used to include both weighted factors and constraints by the 

logical AND operation. The intersection of all the criteria leads to obtaining suitable areas for 

a specific LULC class (Figure 7). 

5.5. Simulation of the land use/land cover 

The integrated model of Cellular Automata and Markov models can predict LULC changes 

based on two–time intervals. Therefore, the transition probabilities for the period 2005–2010 

along with the basis LULC 2010 were used to simulate LULC in 2015. Each pixel of each 

LULC type was attributed future suitability by the suitability map for each LULC class. In 

addition, a standard 5×5 boolean mask filter was used to analyze the neighborhood definition 

that the suitability weight of the pixels will decrease far from the existing areas and allocate 

preference to the neighboring suitable areas [41]. The number of iterations i is also the 

number of time steps that will be used in the model. Choosing this number is also one of the 

elements that will influence the model’s expected results. Indeed, to reach the optimal 

parameters, the number of iterations was examined in [53]. In the case of this study, the 

number of iterations was tested as 5, 10, and 20 (Figure 8). 
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Simulated 2015 LULC map i=5 

 

Simulated 2015 LULC map i=10 

 

Simulated 2015 LULC map i=15 
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Figure 8. Simulated LULC map of 2015 at different number of iterations through CA–Markov. 

5.6. Model validation 

Model validation is always an important part to verify and evaluate the accuracy of a 

model. Nevertheless, there are no consolidation criteria for assessing the feasibility of land 

change models [54]. To quantify the proficiency of the model, we need to compare the 

predicted result of the model with a similar and reliable map using the Kappa coefficient 

[55]. But [54, 56] proved that standard Kappa (Cohen’s Kappa) offers almost no useful 

information because it confounds quantification error with location error. Hence, in addition 

to Kappa standard (Kstandard), different components of the Kappa index including the Kappa 

(a) (b) (c)

(d) (e)

Figure 7. Suitability maps for 

various LULC categories (map 

created using TerrSet); *0 to 

255 shows the scale from 

unsuitability to high suitability: 

(a) Forest; (b) Agriculture; (c) 

Built–up; (d) Waterbody; (e) 

Bare area.   



VN J. Hydrometeorol. 2022, 10, 35-54; doi:10.36335/VNJHM.2022(10).35-54 49 

 

for no information (Kno), Kappa for grid–cell level location (Klocation), and Kappa for stratum–

level location (KlocationStrata) were used to supplement the deficiencies [54]. In short, the 

simulated 2015 LULC map was validated with the classified 2015 map, and the results are 

shown below (Table 8). 

Table 8. Summary of Kappa statistics for the models on validation data (2015). 

Kappa Indices 2015 LULC (i = 5) 2015 LULC (i = 10) 2015 LULC (i = 20) 

Kno 0.9507 0.9349 0.9119 

Klocation 0.9178 0.8887 0.8451 

KlocationStrata 0.9178 0.8887 0.8451 

Kstandard 0.9156 0.8865 0.8420 

[57] claimed that associations between two variables that both rely on coding schemes 

with K < 0.7 is often impossible and said that content analysis researchers generally think of 

K > 0.8 as good reliability, with 0.67 < K < 0.8 allowing tentative conclusions to be drawn. 

Therefore, the simulation provided valid results, then the calibrated model could be applied 

for the prediction of future patterns – 2030 LULC map. 

5.7. Future land use/land cover modeling 

After calibration, the CA–Markov model has proven its viability in performing future 

LULC simulations, 2030. Therefore, this model has continued to be used with parameters 

that have been demonstrated to be accurate in study area conditions – the Ca river basin – as 

factors along with its weights and constraints, number of iterations, etc. However, the 

difference was the input data: 1) satellite–derived LULC maps for 2010–2015 were used to 

project the LULC for 2030; 2) constituents that generated factors such as main roads, rivers 

were updated until 2015. The predicted LULC map of 2030 is shown in Figure 9. 

 

Figure 9. Predicted LULC map of 2030. 
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Figure 10. Area (ha) and percentage distribution (%) for each LULC class in 2030. 

 

Figure 11. The predicted amount of change from a) 2005 to 2030; b) 2015 to 2030. 

Figure 9 demonstrates the spatial distribution of each LULC class in 2030 that predicted 

by the CA_Markov model. Figure 10 is a quantitative figure for the number of hectares of 

each type of land: forest, agriculture, built–up, waterbody, bare area corresponding to 55%, 

26%, 10%, 3%, 6% of the total land in 2030. We can also easily see the increase of bare areas 

in the Western uplands by 2030 compared to previous years. In addition, forest areas are 

projected to decline sharply, especially in areas close to agricultural land and built–up land. 

Agricultural land in 2030 increased compared to 2005 (Figure 11a). Specifically, in Figure 
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11b, bare land increased by 4.55%, waterbody increased by 2.27%, built–up land increased 

by 4.17%, agricultural land increased by 6.70% between 2015 and 2030. The area of forest 

land has increased slightly in the period of 2005–2010, but in the years after that figure kept 

going down, especially from 2015 to 2030, the area of forest land decreased by 17.71%. In 

total, hectares were projected to change from 2015 to 2030 were 961777.24 ha, equivalent to 

35.39% of the total studied land area. 

6. Conclusion 

This study demonstrates the feasibility of the Markov Chain and Cellular Automata 

approach for modeling the LULC in the Ca river basin, Viet Nam. The research process also 

clarified the model test and evaluation options, resulting in a calibrated model with 

appropriate parameters for the conditions of the study area. Validation results with Kappa 

coefficients of Kno = 0.95, Klocation = 0.91, KlocationStrata = 0.91, Kstandard = 0.91 showing strong 

agreement between satellite–derived and simulated LULC maps also denote that the model 

has good reliability. 

The results of this study reveal that LULC in the Ca river basin has been, and will 

continue to change. Specifically, by 2030 the area of forest land will be reduced 17.71% and 

transformed into other types of land such as agricultural land 6.70%, construction 4.17%, and 

vacant land 4.55%. This also accurately reflects current socio–economic development trends: 

urbanization, agricultural land expansion, deforestation, etc. The change will increase the 

pressure on other natural factors such as soil status, water resources in this area. This still 

requires further research, but knowing the specific quantitative numbers of the area and type 

of LULC that will change will greatly assist in the process of assessing the impacts of LULC 

on other natural factors. 
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Abstract: Modeling approach has considered as an effective alternative method for 

environmental risk assessment in recent decades. This work aimed to assess the pesticide fate 

and transport from rice paddy which has higher potential of pesticide runoff compared to 

upland fields as reported in previous studies. The study area was the Sakura River watershed, 

Ibaraki Prefecture, Japan. For modeling rice pesticide, the study applied the 

PCPF–1@SWAT2012 model. The model was used to simulate concentration of a rice 

pesticide namely fipronil (C12H4Cl2F6N4OS) in 2009. The simulated streamflow and pesticide 

concentration were calibrated and validated. The results showed that the maximum pesticide 

concentrations at the monitored point in the wastershed was 0.008 μg/L in rice paddy 

cultivation season of 2009. In conclusion, the modeling of the pesitcide was successfully 

performed in the Sakura River watershed by using the PCPF–1@SWAT2012 model. The fate 

and transport of the pesticide were assessed. Thus, the modeling can be useful tool for 

environmental risk assessment. 

Keywords: The PCPF–1@SWAT2012 model; Pesticide fate and transport; Rice paddy; Rice 

pesticide; The Sakura River watershed. 

 

1. Introduction 

Rice is main daily meals for nearly half of the world’s population especially in Asia [1]. 

The total global rice consumption is increased from 150 million tons in 1961 to 475 million 

tons in 2016 and predicted continue to rise in the future [1–2]. Maintaining production of rice 

is very important task for agriculturists. Due to occurrences of various insects, diseases and 

weeds, rice farmers have been forced to depend on pesticides [3–4]. However, inappropriate 

use and management of rice pesticides may adversely affect the aquatic environments. 

Numerous monitoring studies from Europe and Japan have provided evidence that high 

pesticide concentrations were usually found in rivers during pesticides application periods of 

rice cultivation season [5–6]. Because pesticides are applied in the rice paddy where rice is 

cultivated under the submerged condition, pesticide runoff can occur more frequently via 

drainage or seepage and percolation [7]. Asian countries produce 90% of rice production in 

the world [2]. As a result, the aquatic environment of these countries may be at high risk of 

water contamination due to pesticides loss from rice paddy fields. 

Japan is the tenth largest producer of rice in the world. Though pesticides use in Japan 

has decreased, it is still higher compared to other Asian countries [8]. Some studies reported 
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that the loss of pesticides from rice paddies is one of the major non–point sources of pesticide 

pollution of water in streams or rivers in Japan [7, 9–10]. Sakura River watershed is located 

about 50 km north–east of Tokyo and one of the popularity monitored watershed. Sakura 

River watershed is an agricultural watershed with 77.6% of the geographical area under 

forest and agriculture in Ibaraki prefecture, Japan [11]. During the rice cultivation season of 

the watershed, pesticides loads of the streams which are elevated due to agricultural 

drainages from rice paddies, have a potential to cause aquatic toxicities. Recent 

investigations reported that more than 39 kinds of herbicides, insecticides, and fungicides 

were detected in the watershed [11–12]. Specifically, in 2007 and 2008, concentrations of 

herbicides such as bromobutide, daimuron, and imazosulfuron were monitored at more than 

2 μg/l in early–mid of rice season while simetryn and bentazone were high in mid and late of 

rice season. The high concentrations of these pesticides may adversely affect aquatic 

ecosystems by changing water quality and interrupting  the  aquatic  food  chain  

resulting  in  the  loss  abundance  aquatic  species [13]. Due to these reason, pesticides 

use in the rice production of Sakura River watershed is of great concern. Therefore, the 

prediction and assessment of their fate and transport in water is required to minimize the 

adverse impacts in the aquatic environment of the watershed. 

In recent decades, computer models have been developed and widely applied in many 

fields such as graphics, geology, geography, environment and agriculture. For rice paddy, 

they have become an advantages management tool since the last two decades. Since a rice 

paddy model in watershed scale has been required for assessing the potential environmental 

risks in Sakura River watershed, RICEWQ–RIVWQ, PADDY–Large, and 

PCPF1@SWAT2012 model could be considered as best candidates (REF). However, the 

RICEWQ–RIVWQ and PADDY–Large algorithms for runoff and pesticide movement have 

focused only on simulation of paddy hydrology and ignored other types of land uses, which 

may significantly influence the hydrologic dynamics and pesticide concentrations of river 

basins [14]. On the other hand, the PCPF–1@SWAT2012 simulates both hydrologic 

processes and pesticide transports from the watershed at two phases [15]. First, the upland 

phase controls the amount of surface runoff and pesticide loadings to the main channel from 

upland fields. Second, the water or routing phase controls the movement of water and 

pesticide loadings through the channel networks of the watershed into the outlet. Thus, the 

PCPF–1@SWAT2012 is a more appropriate model for this specific study. Therefore, this 

study aims to evaluate a rice pesticide transport at the Sakura River watershed by using the 

PCPF–1@SWAT2012model.  

2. Materials and Methods  

2.1. Study area  

The Sakura River watershed located in Ibaraki Prefecture, Japan (Figure 1). The 

watershed area is about 335 km2 and main stream, namely the Sakura River, which flows into 

Lake Kasumigaura is 53.4 km long [11, 16]. The topography of the watershed is classified 

into mountain areas in the north, and flat in the west and southeast of the watershed, with 

average elevation ranging from 8 to 852 m [17]. The land use in the Sakura watershed 

consists of forest land (32.0%), rice paddies (28.6%), upland agricultural fields (17.0%), 

residential land (13.9%), and other land use (8.5%) [11, 18]. With respect to soil types, the 

lower and upper parts of the watershed are mostly Brown forest, Black, and Gray lowland 

soils while other parts are mostly composed of Gley and Peat soils [19]. The Sakura 

watershed generally has a temperate climate; with the average annual rainfall of 1,318 mm. 

The average daily maximum and minimum temperatures are 19.6°C and 10.1°C, respectively 

[20]. 
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Figure 1. Location and elevation of the Sakura River watershed. 

2.2. PCPF–1@SWAT2012 model 

2.2.1. Brief model description 

PCPF–1@SWAT2012 was updated from the PCPF–1@SWAT which was developed 

for assessing the impacts of rice pesticides on aquatic environments in watershed scale [21]. 

Similar to the Soil and Water Assessment Tool (SWAT) model, the PCPF–1@SWAT2012 

model also requires topography, land use, soil, weather, crops management practices and 

pesticide as input data. Figure 2 shows the implementation of Pesticide Concentration in 

Paddy Field (PCPF–1) model into SWAT model version 2012. In the PCPF–1@SWAT2012 

model, rice paddy has been defined as pothole, which is a kind of water bodies for 

impoundment function in SWAT model. Hence, all performances of the PCPF–1 model are 

executed inside the pothole of SWAT model. In the PCPF–1@SWAT2012 model, the 

subbasin can be divided into one or multi hydrologic response units (HRUs). Each subbasin 

can be set one or multi potholes. When the water is ponding into the pothole, a water balance 

algorithm is used to calculate the daily amount of runoff. This water balance includes 

precipitation, water inflow, surface runoff, evapotranspiration, seepage and discharge. In 

addition, the calculation of water balance components, irrigation process and the pothole 

variables were redefined. When integrating PCPF–1 model into SWAT model, a procedure 

to calculate the concentration of pesticide sorbed on sediment was added in the 

PCPF–1@SWAT2012 model. Because the sediments dissolved in paddy water are not 

simulated by the PCPF–1 model, pesticide sorbed on soil could not be predicted by overflow 

[22]. Moreover, recirculation scheme of water was developed. This option aims to calculate 

the water loss via surface water drainage and tile drainage, which can be collected and 

re–injected in the field to reduce fresh water requirement. 

The PCPF–1@SWAT2012 model was verified and validated in two phases  . In the first 

phase, the pothole algorithms and pesticide mass balance of the model were checked with 

single and multiple pesticide applications scenarios. The verified results showed that the 

algorithms used to simulate paddy field water management and pesticide concentrations for 

single and multiple applications were also correctly implemented into SWAT, and the 

PCPF–1 was correctly linked to the SWAT model. For the second phase, the 
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PCPF–1@SWAT2012 model was applied in Sakura River watershed (Ibaraki, Japan) for 

simulating four herbicide fate and transport. The simulated water flow rate and pesticides 

concentrations in the Sakura River watershed were good. The model needs to be checked and 

verified in other watersheds with various pesticides and pollutants. 

 

Figure 2. The implementation of PCPF–1 model into SWAT model flowchart [14]. 

2.2.2. Data collections and processing 

The topographic data was obtained from the website of the The Terra Advanced 

Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model 

(ASTER–GDEM) at resolution of 30 m [17]. Stream network and subbasin boundaries data 

were downloaded from the National Land numerical information download service [18]. The 

land use data of the Sakura River watershed used in this study were created in 2008 [18]. The 

data were downloaded from National Land numerical information download service. The 

dominant land use types of the watershed were forest (32.01%), paddy fields (28.55%), 

upland agricultural (17.04%), and residential land (13.92%). Paddy fields predominantly 

covered the west and south parts of the watershed. Soil types were identified in the catchment 

based on a 1:25,000 digital cultivated soil data for Ibaraki prefecture in 2007 [19]. The 

dominant soil types of the lower and upper parts of the Sakura river watershed were mostly 

Brown forest, Black and Gray lowland soils. The remaining parts of the Sakura river 

watershed were mostly composed of Gley and Peat soils. Two of the above listed data were 

provided in the Japan Profile for Geographic Information Standards format (JPGIS) under 

Geographic Projection (JGD 2000), which need conversion into spatial vector–type GIS 

(shapefile) and SWAT attribute format  under Universal Transverse Mercator Projection 

(JGD 2000 UTM Zone 54). The observed daily data of precipitation, minimum and 

maximum temperatures were also collected. Four years weather data (2006–2009) were 

downloaded from Japan Meteorological Agency– Radar–AMeDAS–analyzed data base [20]. 

Water flow rates at the outlet were acquired for 2008 and 2009 from the observation data of 

the Water Information System of the Ministry of Land, Infrastructure and transport, Japan 

[18]. 

Regarding pesticide data, the PCPF–1@SWAT2012 model requires two groups of 

pesticide data including application and pesticide properties. The model demands pesticide 



VN J. Hydrometeorol. 2022, 10, 55-63; doi:10.36335/VNJHM.2022(10).55-63 59 

 

application time, rate, area, and water holding period (WHP) for creating pesticide input table 

(Table 1). The application rates of the pesticides were obtained based on shipment amount, 

usage rate, percentage active ingredient and pesticide product information which were 

extracted from various literatures especially pesticide database of Japan Plant Protection 

Association (JPPA) [23]. An insecticide namely fipronil (C12H4Cl2F6N4OS) was selected for 

the model simulation because the required input data of the pesticides were available. 

Table 1. Required pesticides application data for writing the pesticide input table of the model. 

Parameter  Unit Definition Input file 

MGT_OP none Operation code. MGT_OP=19 for rice pesticide application .mgt 

MONTH/DAY or HUSC days Day and month when the rice pesticide is applied in the HRU .mgt 

pcpfipest none Integer that identify the pesticide name .mgt 

pst_pcpfkg g/m2 Pesticide application rate .mgt 

pcpfarea % Percentage of the HRU where the pesticide has been applied .mgt 

pcpfwhp days Water holding period .mgt 

2.2.3. The model evaluation 

The study used the Nash–Sutcliffe model efficiency coefficient (NSE), the Root Mean 

Square Error (RMSE) and Percent bias (PBIAS) to evaluate the prediction performance, 

tendency and model accuracy [24–27]. NSE can range from –∞ to 1 and an NSE of 1 

corresponds to a perfect match between estimation and observations. An NSE of 0 indicates 

that the model estimations are as accurate as the mean of the observed data, whereas an NSE 

less than zero (–∞ <NSE < 0) occurs when the model prediction of observed mean is not 

accurate. Similar to NSE, RMSE is also one criterion most widely used for assessment of 

model output against observed data. The RMSE values can range from 0 to + ∞ with 0 being 

a perfect prediction. Because NSE is related normalization of the mean squared error (MSE) 

and RMSE [28] the PBIAS was additionally calculated. The optical value of PBIAS is 0.0, 

positive and negative PBIAS values indicate model underestimation and overestimation bias, 

respectively [26, 29]. 

3. Results and Discussions 

3.1. The model calibration and validation  

The Sakura River watershed is divided into 36 subbasins based on hydrological 

characteristics of the watershed. Simulations have been done for the calibration (2008) and 

validation (2009) of water discharge in daily time step (Figure 3). Since the rice paddy 

accounted to 28.5% of the Sakura River watershed area, the water management practices in 

the paddy field have significant effect on the water flow simulation. However, according to 

[22] no reliable data regarding that kind of activities in the watershed were available. 

Therefore, the input data related to the water management practices in the paddy field of the 

watershed were generated based on assumptions, and those data were extracted from the 

study [14]. The water management input data include (i) the water holding period, which was 

7 days after the pesticides application, (ii) the tile flow rate to channel from paddy fields, 

which was 0.12 cm/day, and (iii) the percolation rate in the paddy fields, which was 1 

cm/day. In addition, the study could only calibrate parameters of pesticide simulation in 2009 

due to the observed pesticide data limitation. The selected parameters for calibration of the 

water discharge and pesticide simulations in the Sakura River watershed are shown in Table 

2.  
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Table 2. The calibrated values of the parameters used for the water flow rate simulation. 

Parameter Description Unit 
Calibrated 

range 

Output 

variables 

GWQMN 
Threshold depth of water in the shallow 

aquifer 
mm 0–5000 

Water 

discharge 

GW_DELAY Groundwater delay day 0–500 

GW_REVAP Groundwater “revap” coefficient none 0.02–0.2 

REVAPMN 
Threshold depth of water in the shallow 

aquifer for “revap” to occur 
mm 0–500 

LAT_TTIME Lateral flow travel time day 0–180 

CN2 Initial SCS CN II value none –0.2–0.2 

PERCOP Pesticide percolation coefficient none 0–1 

Pesticide 
CHPST_REA Pesticide reaction coefficient in reach 1/day 0–0.1 

CHPST_KOC 
Pesticide partition coefficient between 

water and sediment in reach 
m3/g 0–0.1 

 

Figure 3. The simulated water flow rate at the outlet of the Sakura River watershed during the 

2008–2009 period. 

 

Figure 4. The predicted fipronil concentration for rice season during 2009 at the pesticide 

monitoring point in the watershed. 

Although the simulated baseflow was fluctuated more than that of the observed data, the 

simulated flow rate showed good response with the observed data and precipitation. 

Specifically, when the rain came, peak of predicted water flow rate was achieved and vice 

versa; and the tendency between the predicted flow rate and the observed data was found 

similar. Table 3 shows the calculated statistical indices for evaluating the model performance 

of water discharge simulation. The calculated RMSE and PBIAS values, respectively, 

showed that the predicted water discharge rate had large errors and they were overestimated. 

Meanwhile, the NSE values indicated that the water discharge rate simulation of the model 

was good in the calibration year and acceptable in the validation year. 
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The predicted concentrations of the insecticides were lower compared to the measured 

insecticides concentrations. The statistical evaluation results of the predicted values of the 

insecticides concentrations are summarized in Table 3. The NSE and RMSE values were 

very close to zero. However, the values of PBIAS index indicated that the predicted 

concentrations of the insecticide in the reach were underestimated possibly because of the 

insecticide application timing and rate, which did not match with the corresponding actual 

application timing and rate. In conclusion, the predicted insecticides concentrations were 

found acceptable. 

Table 3. The computed values of model evaluation indices values for the simulated concentrations of 

the two insecticides. 

Variables Period NSE RMSE PBIAS 

Water discharge 
Calibration 0.85 6.52 –15.68 

Validation 0.22 7.03 –26.24 

Fipronil Calibration 0.19 0.001 19.12 

3.2. Assessment of Fipronil transport 

In the Sakura River watershed, the paddy fields are allocated a long with the river in 

low–land area. So, the applied pesticides in paddy fields are likely to spread to the 

surrounding aquatic environment. The simulated fipronil concentrations at the monitoring 

point are displayed in figures 4. The maximum values of the predicted and monitored 

insecticides concentrations were 0.008 and 0.005 μg/L in 2009 for fipronil. Since insecticides 

are applied to protect rice against insects throughout the whole growing season, their 

concentrations in reach increased two times in the 2009 rice season. However, the predicted 

insecticides concentrations occurred at the beginning of May, rose up in the middle of May, 

and then decreased. 

The pesticides concentrations, which were simulated by the PCPF–1@SWAT2012 

model, showed that the rice treated area, application timing, rate and water solubility have 

strongly affected the prediction. Specifically, the peaks of the insecticides in the middle of 

May were probably due to nursery–box application upon transplanting. Although fipronil 

had large rice treated area its peak concentrations of fipronil were low. That can be explained 

by the application rate of 0.0101 kg/ha, and water solubility values of 3.78 mg/L for fipronil. 

In addition, the simulated concentrations of the insecticides were low might because of  the 

high Koc (803 ml/g for fipronil) and expected to be mainly applied following the pest 

forecasting. In other words, the differences in the application rates and methods for the 

insecticides probably explain why they were detected and simulated at low concentrations. In 

addition, the pesticide transport was associated with rainfall. When ranfaill eccexed certain 

amount, it caused loss of the applied pesticide from rice paddy. On the other hand, high 

rainfall also diluted the pesticide concentration in water bodies. 

4. Conclusions 

The PCPF–1@SWAT2012 model was applied for predicting transport of a rice 

insecticide namely fipronil in the Sakura River watershed during 2008–2009 period. The 

model simulated the observed data with acceptable tendency. The fipronil concentration was 

increase during rice seasons in the watershed. Strong relationship existed between the 

increase in the simulated pesticide concentration in the rivers and pesticide application 

timing and rainfall. However, the model needs to be verified with other pesticides in this 

watershed as well as in other watersheds. Furthermore, to improve the model accuracy, 
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detailed information regarding water management and pesticide use in the watershed are 

required. 
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Abstract: In this paper, an artificial neural network (ANN) model was applied to forecast 

PM2.5 at the Coc Sau open–pit coal mine (Northern Vietnam) with fine–tuning parameters. 

It aims to provide the feasibility and insights into controlling air quality in open–pit mines 

using artificial intelligence techniques. Accordingly, an air quality monitoring system was 

established to monitor hourly PM2.5 datasets for more than three months. Subsequently, 

80% of the whole data was used to design and tune the ANN model, and the remaining 20% 

was used for testing the PM2.5 predictions. An ANN model with a single hidden layer and 

ten nodes was developed for this aim. The stochastic gradient descent algorithm was applied 

to train the ANN model under the learning rate of 0.001 to avoid the overfitting of the model. 

In addition, 10 time steps (multi–step forecasting model) were applied to forecast the next 

time step. The results indicated that ANN is a potential model for forecasting PM2.5 in 

open–pit mines with high accuracy (RMSE = 2.000), and it can be used to control real–time 

air quality in open–pit mines.  

Keywords: Open–pit mine; Air quality controlling system; PM2.5; Artificial neural 

network; Multi–variate multi–step time series forecasting. 

 

1. Introduction 

Surface mining is one of the most popular methods for mineral exploitation; however, 

its side effects on the surrounding environment are significant. Of the side effects, dust is 

considered one of the significant concerns in open–pit mines, and it can spread from the 

surface of open–pit mines to the surrounding areas [1–2]. From the environmental point of 

view, particular matter (PM) of dust in the atmosphere is an important factor in evaluating 

the size of dust, as well as its dangerous levels for human health, particularly in the workers 

in mine sites [3–4]. Of those, PM2.5 is considered more dangerous than PM10 due to its size 

and the ability to enter the human body, primarily through inhalation [5]. Therefore, this 

study considered PM2.5 in open–pit mines as the main objective, and the feasibility of 

artificial neural network (ANN) will be discovered to forecast PM2.5 in open pit mine. 

Review of related works shows that artificial intelligence (AI) techniques have been 

widely applied to forecast air quality and different PM, especially PM2.5. However, studies 
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with the applications of AI for forecasting PM2.5 in door and out door are popular, but in 

open–pit mines is very rare. For instance, [6] applied a machine learning model, namely 

gradient boosting machine (GBM) associated with particle swarm optimization (PSO) to 

forecast PM2.5 in an open–pit mine with different scenarios. Average accuracy of 0.954 was 

indicated in their study with the proposed PSO–GBM model. [7] also applied a deep learning 

algorithm, namely long short–term memory (LSTM) neural network–attention for 

forecasting PM2.5, and it was then compared to the autoregressive integrated moving average 

(ARIMA) model. Their results showed that the LSTM–attention model could forecast PM2.5 

with better accuracy (from 3–5.6%).  

In this study, we tried to discover the feasibility of ANN in forecasting PM2.5 at an 

open–pit coal mine in Vietnam. The structure of the ANN, as well as its performance, will 

be diagnosed in this study to interpret whether it is suitable for forecasting and controlling 

air quality in open–pit mines in Vietnam. It is worth mentioning that the ANN model is 

developed as the second phase based on the dataset monitored by an air quality monitoring 

system that was developed by our research group (Innovations for Sustainable and 

Responsible Mining – ISRM), and they are considered a completed air quality controlling 

system in open–pit mine. 

2. Background of ANN 

In this study, ANN is considered and fine–tuned to forecast PM2.5 in deep open–pit 

mines. The applications of AI in general and ANN have been introduced and developed over 

the last decade [8–10]. ANN simulates the relationship between input and output variables 

and recognizes a biological brain function to solve complicated problems in nature [11]. 

Accordingly, complex non–linear problems can be recognized by the human brain through 

the input–output mapping in a short time. For simplicity, the computation speed of ANN can 

be divided into three simplified layers. The first layer is on a mission to gather information, 

either through observation or other components. They are then transferred to the neurons in 

the network (the second layer), and herein, they are analyzed and computed. Activation 

functions may be applied to transfer the information, and finally, in the last layer, the output 

is computed/ forecasted. 

 

Figure 1. Architecture of the ANN model for forecasting PM2.5. 
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ANN applies the same logic to these layers. The first layer of the human brain is called 

the input layer in ANN with the same functions. They can be entered by human from the 

gathered information. Depending on each problem, the number of dimensions of the dataset 

may be different. It also depends on the difficulties of the data collection. Once the inputs are 

entered, they are transferred to the hidden layer (the second layer) to simulate the 

relationships between inputs and output. Similar to the human brain, ANN can consist of 

multiple hidden layers. In each hidden layer, a number of neurons (nodes) are designed for 

the computational functions. Finally, the desired variable based on the analyzed relationships 

will be predicted. Herein, ANN is used to forecast PM2.5 at an open–pit mine, and its 

structure is shown in Figure 1. 

3. Application 

As introduced above, this study intends to apply the ANN model to forecast PM2.5 and 

evaluate the air quality in open–pit mines. In the application field, a case study will be 

performed for this aim and the details are presented in the three sub–sections: data collection, 

design the topology network, and training the model. 

3.1. Data collection 

For forecasting PM2.5 in deep open–pit mines, the Coc Sau open–pit coal mine 

(Vietnam) was selected as a case study with a depth of –300 m (below sea level). It is worth 

noting that the air quality of the bottom is pretty bad at such depth. To collect the dataset, an 

air quality monitoring system based on the internet of things was designed and developed by 

the Innovations for Sustainable and Responsible Mining (ISRM) Research Group of the 

Hanoi University of Mining and Geology (HUMG). This system can monitor nineteen 

parameters using intelligent sensors and a wind measuring system, including air quality 

parameters and meteorological conditions. Many researchers indicated that meteorological 

conditions have significant effects on air quality index [12–14]. They are therefore used to 

forecast PM2.5 in this study. However, in this study, only five parameters were used for 

forecasting PM2.5, including temperature (T), humidity (H), air pressure (P), wind speed 

(WS) and PM2.5, and it is a multivariate dataset. This data represents a multivariate time 

series of PM2.5–related variables, that in turn could be used to model and even forecast future 

PM2.5 in open–pit mines. For this aim, the parameters were measured hourly from September 

16 to October 28, 2020. Finally, a total of 1011 samples were recorded and compiled as the 

multi–variate dataset for forecasting hourly PM2.5. It is worth noting that the dataset 

measured using this monitoring system is the time series dataset and they are hourly 

observations. The dataset is visualized in Figure 2. 

 

Figure 2. Timeseries dataset of the PM2.5 at the Coc Sau open–pit coal mine. 
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3.2. Design topology network 

Prior to training the ANN model for forecasting PM2.5, a topology network was 

designed, including the number of hidden layers and the number of hidden nodes. 

Accordingly, a trial and error procedure was deployed with a different number of hidden 

layers and nodes through the MSE, which was used as the objective function. The dataset 

was normalized using the MinMax scaling method and the stochastic gradient descent (SGD) 

algorithm was used to train the ANN model with different topology networks, as shown in 

Figures 3 and 4. Please be noted that, due to the stochastic mechanism of the SGD algorithm, 

the results may be different with different runs. 

Analyzing the performance of the ANN model with a different number of hidden layers, 

we can see that the best number of hidden layers is five hidden layers. However, the 

performances between different numbers of hidden layers are not too dissimilar. 

Furthermore, many researchers recommended that the ANN model with a single hidden layer 

can solve and model most problems [15–16]. Therefore, for simplicity, we selected the 

topology network with one hidden layer to improve the computational cost. 

For the selection of the number of hidden nodes (Figure 4), it is clear that the ANN model 

with 15 hidden nodes provided the lowest MSE, and therefore, it was selected as the best unit 

of the ANN model. In other words, the ANN model with the structure of a single hidden layer 

and 15 nodes was selected for forecasting PM2.5 in this study. 

 

Figure 3. Selection of the optimal number of hidden layers for the ANN model. 

 

Figure 4. Selection of the optimal number of hidden nodes for the ANN model. 
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3.3. Training the model 

Once the structure of the ANN model was defined, the SGD algorithm with the learning 

rate of 0.001 was applied to train the ANN model for forecasting PM2.5. The Minmax scaling 

method was applied to normalize the attributes in the range of 0 to 1. Besides, the selection 

of the learning rate of 0.001 is to avoid overfitting of the ANN model, and it was determined 

using the trial and error procedure, as well. It should be noted that 80% of the whole dataset 

was selected for this task, as shown in Figure 5. 

 

Fig. 5. Splitting dataset for training and testing the model (training dataset – blue line; testing dataset 

– orange line). 

During training the model, to ensure the model's convergence, the training process was 

implemented with 1000 epochs through the loss function (i.e., MSE). In this study, multi–

step time series forecasting model was used to forecast PM2.5 in the future. To do so, the 

number of time steps were selected as 10 to forcast the next time step. In other words, t–1, t–

2, t–3, t–4, t–5, t–6, t–7, t–8, t–9, t–10 values were used to forecast the t value. The training 

results of the ANN model for forecasting PM2.5 are shown in Figure 6. 

 

Figure 6. Training performance of the ANN model for forecasting PM2.5. 
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4. Results and discussion 

As depicted in Figure 5, it is conspicuous that the performance curves are excellent, and 

the model has no overfitting. In other words, the training and testing performances are high 

convergence with very low lost function values, and the trained ANN model is feasible for 

forecasting PM2.5 at the Coc Sau open–pit mine.   

Once the ANN was well–trained, it was applied to forecast PM2.5 in the testing dataset 

(out–of–samples) to check the model's goodness. It is worth mentioning that the out–of–

samples have not been used before during training the model, as illustrated by the orange line 

in Figure 5. This step aims at providing the forecast results of PM2.5 in the future (e.g., next 

hours – hourly PM2.5) by the developed ANN model. The results are shown in Figure 7. 

 

Figure 7. Comparison of the actual and forecasted PM2.5 by the trained ANN model (a) Training 

dataset; (b) Testing dataset. 

As compared between the actual and forecasted PM2.5 values in Figure 7, we can see 

that the developed ANN model worked very well in both the in–samples and out–of–samples. 

The trends and forecasted values are pretty close to the actual values, even though at several 

peak points. On the other hand, it seems that the performance on the training dataset is slightly 

better than the performance on the testing dataset. Therefore, statistical metrics and 

regression analysis are necessary to evaluate whether the model is overfitted. Herein, the root 

mean squared error (RMSE) and mean absolute percentage error (MAPE) were used to 

consider the error of the model, as calculated using equations (1) and (2). In addition, the 

correlation analysis is performed in Figure 8 to show how the forecasted PM2.5 is far from 

the actual PM2.5. 
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where iy  is the actual PM2.5; ˆiy  is the forecasted PM2.5, and n denotes the number of 

samples. 

Based on the calculations using equations (1) and (2), the accuracy of the ANN model 

obtained an RMSE of 2.152 and MAPE of 0.037 on the training dataset. Meanwhile, they are 

2.000 and 0.035 for the RMSE and MAPE on the testing dataset, respectively. With these 

statistical metrics, we can claim that the developed ANN model has not been overfitted. In 

(a) (b)
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contrast, its accuracy is very good, with a MAPE of 0.037 only on the training dataset and 

0.035 on the testing dataset. 

 

Figure 8. Regression analysis of the forecasted PM2.5 by the ANN model: (a) Training dataset; (b) 

Testing dataset. 

Furthermore, the regression analysis in Figure 8 showed that the dataset used is 

equivalent suitable to the developed ANN model, although its determination coefficient (R2) 

is only 0.75 and 0.744 on the training and testing datasets, respectively. Nonetheless, R2 is 

rarely used to evaluate the accuracy of a time–series model [17]. Thus, RMSE, MAPE, and 

comparison in Figure 7, as well as the curves performance in Figure 6, are conspicuously 

enough to conclude that the developed ANN model is a good candidate for forecasting PM2.5 

in open–pit mines, especially at the Coc Sau open–pit coal mine, as analyzed and discussed 

in this study. 

5. Conclusion 

This study discovered the feasibility of the ANN model for forecasting PM2.5 in deep 

open–pit mines under the consideration of meteorological conditions. The obtained results 

indicated that ANN is a good approach for forecasting PM2.5 in open–pit mines. By the use 

of the monitoring system combined with the ANN model, engineers can control the air 

quality in general, and especially PM2.5 in open–pit mines.  

Despite this, further studies in the future are still needed to provide more detailed 

arguments for the application of AI models to forecast air quality in open–pit mines, as well 

as improve their accuracy. 
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